50 к аппаратным средствам компьютера относятся. Аппаратные средства персонального компьютера

К аппаратному обеспечению относятся устройства, образующую конфигурацию компьютера. Различают внутренние и внешние устройства. Согласование между отдельными узлами и блоками выполняется с помощью аппаратно-логических устройств, называемых аппаратными интерфейсами. Стандарты на аппаратные интерфейсы называют протоколами. Протокол - это совокупность технических условий, которые должны быть обеспечены разработчиками устройств.

Персональный компьютер - универсальная техническая система, конфигурацию которой можно изменять по мере необходимости. Тем ни менее существует понятие базовой конфигурации. В настоящее время базовая конфигурация состоит из 4 составляющих

1. системный блок

2. монитор

3. клавиатура

Системный блок

Системный блок - основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока называются внутренними, а подключаемые к нему снаружи - внешними и периферийными. Основной характеристикой корпуса системного блока является параметр, называемый форм-фактором . От него зависят требования, предъявляемые к размещаемым устройствам. Форм-фактор системного блока обязательно должен быть согласован с форм-фактором главной (системной, материнской) платы. В настоящее время наиболее распространенны корпуса с форм-фактором ATX. Корпуса поставляются вместе с блоком питания.


Внутренние устройства системного блока

Материнская плата - основная плата компьютера. На ней размещаются:

1. процессор - основная микросхема, выполняющая арифметические и логические операции - мозг компьютера. Процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называются регистрами . Часть регистров являются командными, то есть такими, которые воспринимают данные как команды, управляющие обработкой данных в других регистрах. Управляя засылкой данных в разные регистры, можно управлять обработкой данных. На этом основано исполнение программ. С остальными устройствами процессор связан несколькими группами проводников, называемых шинами . Основных шин три: шина данных, адресная шина и командная шина . Адресная шина состоит из 32 параллельных проводников(32-разрядная). По ней передаются адреса ячеек оперативной памяти. К ней подключается процессор для копирования данных из ячейки ОП в один из своих регистров. Само копирование происходит по шине данных . В современных компьютерах она, как правило, 64-разрядная, т.е. одновременно на обработку поступает 8 байт. По командной шине передаются команды из той области ОП, в которой хранятся программы. В большинстве современных компьютеров командная шина 32-разрядная, но есть уже и 64-разрядные.

2. Основными характеристиками процессора являются разрядность, тактовая частота и кэш-память . Разрядность указывает, сколько бит информации процессор может обработать за один раз (один такт). Тактовая частота определяет количество тактов за секунду, например, для процессора выполняющего около 3 миллиардов тактов за секунду тактовая частота равна 3 Ггц/сек. Обмен данными внутри процессора происходит быстрее, чем с оперативной памятью. Для того, чтобы уменьшить число обращений к ОП, внутри процессора создают буферную область - кэш-память. Принимая данные из ОП, процессор одновременно записывает их в кэш-память. При последующем обращении процессор ищет данные в кэш-памяти. Чем больше кэш-память, тем быстрее работает компьютер.

3. микропроцессорный комплект (чипсет ) - набор микросхем, управляющих работой внутренних устройств и определяющих основные функциональные возможности материнской платы.

4. шины - наборы проводников, по которым происходит обмен сигналами между внутренними устройствами.

5. оперативная память - набор микросхем, предназначенных для временного хранения данных

Оперативная память(RAM - random access memory) - массив ячеек, способных хранить данные. память может быть динамической и статической. Ячейки динамической памяти можно представить в виде микроконденсаторов, накапливающих электрический заряд. Динамическая память является основной оперативной памятью компьютера. Ячейки статической памяти представляют собой тригеры - элементы в которых хранится не заряд, а состояние (включен/выключен). Этот вид памяти более быстрый, но и более дорогой и используется в т.н. кэш-памяти, предназначенной для оптимизации работы процессора. Оперативная память размещается на стандартных панельках (модулях, линейках). Модули вставляются в специальные разъёмы на материнской плате.

6. ПЗУ - постоянное запоминающее устройство. В момент включения компьютера его оперативная память пуста. Но процессору, чтобы начать работать, нужны команды. Поэтому сразу после включения на адресной шине выставляется стартовый адрес. Это происходит аппаратно. Этот адрес указывает на ПЗУ. В ПЗУ находятся "зашитые" программы, которые записываются туда при создании микросхем ПЗУ и образуют базовую систему ввода-вывода(BIOS - Base Input/Output System). Основное назначение этого пакета - проверить состав и работоспособность базовой конфигурации компьютера и обеспечить взаимодействие с клавиатурой, монитором, жёстким диском и дисководом гибких дисков.

7. разъёмы для подключения дополнительных внутренних устройств (слоты).

Жёсткий диск

Жёсткий диск - устройство для долговременного хранения больших объёмов данных и программ.

На самом деле, это не один диск, а группа дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Над поверхностью каждого диска располагается головка чтения-записи. При высоких скоростях вращения возникает аэродинамическая подушка между поверхностью диска и головкой. При изменении силы тока, протекающего через головку, меняется напряженность магнитного поля в зазоре, что вызывает изменение магнитного поля ферромагнитных частиц, образующих покрытие диска. Так осуществляется запись на диск. Чтение происходит в обратном порядке. Намагниченные частицы наводят в головке ЭДС самоиндукции, возникают электромагнитные сигналы, которые усиливаются и передаются на обработку. Управление работой жёсткого диска осуществляется специальным устройством - контроллером жесткого диска. Функции контроллера частично вмонтированы в жёсткий диск, а частично находятся на микросхемах чипсета. Отдельные виды высокопроизводительных контроллеров поставляются на отдельной плате.

Дисковод гибких дисков

Для оперативного переноса небольших (до 1.4Мб) объёмов информации используются гибкие диски, которые вставляют в специальный накопитель - дисковод.

Дисковод для компакт-дисков CD или DVD

Принцип действия устройства CD состоит в считывании(записи) данных, с помощью лазерного луча, отражающегося от поверхности диска. При этом плотность записи, по сравнению с магнитными дисками, очень высокая. На стандартный CD-диск можно записать до 650Мб. Появление формата DVD ознаменовало собой переход на новый, более продвинутый, уровень в области хранения и использования данных, звука и видео. Первоначально аббревиатура DVD расшифровывалась, как digital video disc, это оптические диски с большой емкостью. Эти диски используются для хранения компьютерных программ и приложений, а так же полнометражных фильмов и высококачественного звука. Поэтому, появившаяся несколько позже расшифровка аббревиатуры DVD, как digital versatile disc, т.е. универсальный цифровой диск - более логична. Снаружи, диски DVD выглядят как обычные диски CD-ROM. Однако возможностей у DVD гораздо больше. Диски DVD могут хранить в 26 раз больше данных, по сравнению с обычным CD-ROM. Имея физические размеры и внешний вид, как у обычного компакт-диска или CD-ROM, диски DVD стали огромным скачком в области емкости для хранения информации, по сравнению со своим предком, вмещающим 650MB данных. Стандартный однослойный, односторонний диск DVD может хранить 4.7GB данных. Но это не предел -- DVD могут изготавливаться по двухслойному стандарту, который позволяет увеличить емкость хранимых на одной стороне данных до 8.5GB. Кроме этого, диски DVD могут быть двухсторонними, что увеличивает емкость одного диска до 17GB.

Видеокарта

Совместно с монитором видеокарта образует видеосистему компьютера. Видеокарта(видеоадаптер) выполняет все операции, связанные с управлением экраном монитора и содержит видеопамять в которой хранятся данные об изображении.

Звуковая карта

Звуковая карта выполняет операции, связанные с обработкой звука, речи, музыки. Звук воспроизводится через колонки (наушники), подключаемые к выходу звуковой карты. Имеется также разъём для подключения микрофона. Основным параметром ЗК является разрядность, Чем выше разрядность, тем меньше погрешность, связанная с оцифровкой, тем лучше звучание.

Порты (каналы ввода - вывода)

На задней стенке корпуса современных ПК размещены (точнее могут размещаться) следующие порты:

Game - для игровых устройств (для подключения джойстика)

VGA - интегрированный в материнскую плату VGA – контроллер для подключения монитора для офисного или делового ПК

COM - асинхронные последовательные (обозначаемые СОМ1-СОМЗ). Через них обычно подсоединяются мышь, модем и т.д.

PS/2 – асинхронные последовательные порты для подключения клавиатура и манипулятора мышь

LPT - параллельные (обозначаемые LPT1-LPT4), к ним обычно подключаются принтеры

USB - универсальный интерфейс для подключения 127 устройств (этот интерфейс может располагаться на передней или боковой стенке корпуса)

IEЕЕ-1394 (FireWire) - интерфейс для передачи больших объемов видео информации в реальном времени (для подключения цифровых видеокамер, внешних жестких дисков, сканеров и другого высокоскоростного оборудования). Интерфейсом FireWire оснащены все видеокамеры, работающие в цифровом формате. Может использоваться и для создания локальных сетей.

Прежде чем рассмотреть вопрос о классификации компьютеров, остановимся на ряде определений. Обработка информации является важной составляющей информационного процесса. Под обработкой информации будем понимать действия, совершаемые над информацией, представленной в формализованном виде, т. е. в виде структур данных, с помощью определенных алгоритмов – последовательности действий, осуществляемых по определенным правилам и реализуемых с помощью технических средств. Результатом обработки является тоже информация, которая удовлетворяет поставленным целям (например, обработка числовой, текстовой, графической и другой информации) и может быть представлена в соответствующих формах. Попытки автоматизировать процесс обработки информации и вычислений на основе открытий в области математики, физики, химии и т. д. в течение нескольких столетий привели к созданию современного компьютера (от англ. computer, что дословно переводится как вычислитель) или электронно-вычислительная машина (ЭВМ – русское название, которое в настоящее время по ряду причин используется достаточно редко). В современных информационных технологиях компьютер используется в качестве основного технического средства для обработки информации.

Таким образом, компьютером называется техническая система, предназначенная для автоматизации процесса обработки информации и вычислений на основе принципа программного управления. В данном определении используется термин «техническая система», который подчеркивает взаимосвязь аппаратных и программных средств компьютера.

Аппаратные средства представляет собой совокупность технических устройств, обеспечивающих процесс функционирования компьютера. Аппаратные средства часто называют хардом, устоявшимся сленгом в русском языке (от англ. hardware).

Программные средства представляют собой совокупность программ, обеспечивающих процесс обработки информации на компьютере. Программные средства часто называют сленговым словом «софт» (от англ. software).

Как уже отмечалось, в основе любой классификации лежит рациональный выбор признаков, по которым рассматриваемый объект или явление можно разделить на группы или классы. Основной целью классификации является формирование групп или классов с характерными свойствами, присущими только этой группе или классу, что позволяет более детально изучить эти свойства и проследить динамику их изменения во времени. В настоящее время классификация компьютеров не закреплена соответствующими стандартами, что объясняется высокими темпами развития компьютерной техники и информационных технологий. Приблизительно каждые два года происходит замена аппаратных и программных средств компьютера новыми, причем общемировая тенденция направлена на сокращение этих сроков. В этой связи любая классификация компьютеров является условной, поскольку некоторые свойства, которые были характерными для определенных групп (классов) компьютеров в прошлом, утрачивают эти свойства со временем. Принципиально может быть бесконечно много классификационных признаков. Выделим наиболее существенные признаки и проведем по ним классификацию. Условная классификация компьютеров по этим признакам приведена в табл. 5.1.

Таблица 5.1

По времени создания компьютеры подразделяют на поколения (первое, второе, третье и четвертое), которые характеризуются степенью развития аппаратных и программных средств.

Компьютеры первого поколения относятся к середине 40-х и концу 50-х гг. XX в. (1946 г. был создан первый цифровой электронный компьютер ENIAC). В качестве элементной базы использовались электронные лампы, программирование осуществлялось в машинных кодах. Программа вводилась в компьютер путем соединения соответствующих гнезд на специальных наборных платах с помощью электрических проводников. Максимальное быстродействие достигало 20 тыс. операций в секунду.

Компьютеры второго поколения относятся к концу 50-х и середине 60-х гг. XX в. В качестве элементной базы использовались полупроводниковые приборы – транзисторы, что позволило повысить надежность и быстродействие компьютеров. Программирование осуществлялось на языках программирования высокого уровня. Программа вводилась в компьютер с помощью перфокарт и перфолент. Максимальное быстродействие составляло до 1 млн операций в секунду.

Компьютеры третьего поколения относятся к периоду с середины 60-х по середину 70-х гг. XX в. В качестве элементной базы использовались интегральные микросхемы среднего уровня интеграции. Программирование осуществлялось на языках программирования высокого уровня. Программа вводилась в компьютер с помощью перфокарт и перфолент, появились накопители информации на гибких магнитных дисках. Максимальное быстродействие составляло около 1 млн операций в секунду. Компьютеры третьего поколения стали семейством компьютеров с единой архитектурой, что обеспечило их программную совместимость. Они имели развитые операционные системы и обладали возможностями мультипрограммирования.

Компьютеры четвертого поколения относятся к периоду с середины 70-х гг. XX в. по настоящее время. В качестве элементной базы использовались большие интегральные микросхемы (БИС), а затем (в настоящее время) сверхбольшие интегральные микросхемы (СБИС), что позволило существенно повысить надежность и быстродействие компьютеров. На основе БИС, а затем и СБИС строились и строятся микропроцессоры – устройства для непосредственного выполнения процесса обработки данных и программного управления этим процессом. Программирование осуществлялось и осуществляется на нескольких десятках языков программирования высокого уровня, включая и объектно-ориентированные языки программирования. Программы вводились и вводятся в компьютер с помощью разнообразных носителей информации – накопителей на гибких магнитных дисках, жестких магнитных дисков, оптических дисков и т. д. Максимальное быстродействие компьютеров четвертого поколения составляет около 1 трлн операций в секунду.

По форме представления обрабатываемой информации компьютеры подразделяются на три класса: цифровые, аналоговые и гибридные.

Цифровые компьютеры обрабатывают информацию, представленную в цифровой форме (в двоичной системе счисления), и являются самым представительным классом современных компьютеров. Цифровые компьютеры используются для решения самых разнообразных задач, поддающихся формализации, для которых разработаны соответствующие численные методы решений.

Аналоговые компьютеры обрабатывают информацию, представленную в аналоговой форме, т. е. в виде непрерывно меняющихся значений физической величины (электрического напряжения или тока). Аналоговые компьютеры используются для решения физических и математических задач, содержащих дифференциальные уравнения. Кроме того, они используются в системах автоматического регулирования для решения задач в режиме реального времени.

Гибридные компьютеры обрабатывают информацию, представленную в цифровой и аналоговой форме. В таких компьютерах цифровая часть предназначена для управления и выполнения логических операций, а аналоговая – для решения математических уравнений.

По назначению компьютеры подразделяются на три класса: профессиональные, персональные и специализированные.

Профессиональные компьютеры предназначены для обработки больших объемов информации с высокой скоростью. По аппаратному и программному обеспечению они значительно превосходят другие классы.

Персональные компьютеры предназначены для обработки информации на одном автоматизированном рабочем месте (АРМ), при этом их вычислительных ресурсов должно быть достаточно для поддержки такого рабочего места. Кроме того, они должны быть доступны по цене для массового потребителя.

предназначены для обработки информации, связанной с решением узкоспециализированных задач (вычислительных и управляющих). Они не обладают универсальностью, т. е. ориентированы на конкретные практические задачи. Специализированные компьютеры, называемые также контроллерами, встраиваются в системы автоматического управления сложными техническими устройствами или технологическими процессами.

По степени универсальности компьютеры подразделяются на два класса: общего назначения и специализированные.

Компьютеры общего назначения являются универсальными и позволяют обрабатывать информацию, связанную с решением широкого круга задач.

Специализированные компьютеры позволяют обрабатывать информацию, связанную с решением узкопрофессиональных задач.

По способам использования компьютеры подразделяются на два класса: коллективного и индивидуального использования.

Компьютеры коллективного использования предназначены для обслуживания одновременной работы нескольких пользователей. Такие компьютеры, называемые также серверами, используются и для организации работы компьютерных сетей.

Компьютеры индивидуального использования предназначены для обслуживания работы индивидуального пользователя.

По производительности компьютеры подразделяются на три класса: ординарной, высокой и сверхвысокой производительности.

Производительность компьютера является сложной интегральной характеристикой, под которой обычно понимается время, затрачиваемое на решение определенной задачи. Производительность зависит от специфики решаемой задачи, быстродействия компьютера, информационного объема его оперативной памяти и т. д. Быстродействие (скорость обработки информации) компьютера в свою очередь определяется быстродействием микропроцессора, системной магистрали (служит для обмена информацией между функциональными блоками компьютера), периферийных устройств, качеством конструктивных решений и т. д. Поэтому оценить производительность компьютера и тем более классов компьютеров достаточно сложно. На практике производительность компьютера оценивают по некоторым параметрам, определяющим его производительность, т. е. осуществляют косвенную оценку его производительности. К таким параметрам относят: тактовую частоту микропроцессора, скорость переключения системной шины и ее разрядность, тип используемого интерфейса, число команд, выполняемых в секунду, число операций, выполняемых компьютером над числами с плавающей запятой, в секунду и т. д. Выделим некоторые из этих параметров, которые позволяют наиболее просто произвести косвенную оценку производительности компьютера.

Тактовая частота микропроцессора определяет количество элементарных операций (операции, производимые логическими элементами), выполняемых микропроцессором в секунду. При этом под тактом понимается время выполнения элементарной операции. Например, если в техническихарактеристиках компьютера указана тактовая частота микропроцессора, равная 2,4 ГГц, то это означает, что его тактовая частота в герцах будет равна 2,4 ГГц = 2,4 · 1000 МГц = 2,4 · 1000 · 1000 КГц = 2,4 · 1000 · 1000 · 1000 Гц и он может выполнить 2400000000 элементарных операций в секунду.

Число команд, выполняемых в секунду, обычно обозначается аббревиатурой MIPS (Mega Instruction Per Second), что означает количество миллионов команд, выполняемых в секунду. Например, запись 100 MIPS означает 100 млн команд в секунду.

Число операций, выполняемых компьютером над числами с плавающей запятой, в секунду обозначается аббревиатурой MFLOPS (Mega Floating Operations Per Second) или GFLOPS (Giga Floating Operations Per Second), что соответственно означает количество миллионов и миллиардов операций в секунду.

Компьютеры ординарной производительности называют также микрокомпьютерами. К ним можно отнести персональные и специализированные компьютеры. Их условная производительность достигает значений до 10 MFLOPS.

Компьютеры высокой производительности называют также мэйнфреймами. К ним можно отнести профессиональные компьютеры, у которых условная производительность достигает значений до 100 MFLOPS.

Компьютеры сверхвысокой производительности называют также суперкомпьютерами. К ним можно отнести профессиональные компьютеры, у которых условная производительность достигает значений свыше 100 MFLOPS.

По особенности архитектуры компьютеры подразделяются на два класса: с открытой архитектурой и закрытой архитектурой

Под архитектурой компьютера понимается совокупность аппаратных и программных средств, организованных в систему, обеспечивающую функционирование компьютера.

Открытая архитектура была предложена американской фирмой DEC (Digital Equipment Corporation) в 70-х гг. XX в., а затем была успешно использована при разработке персонального компьютера фирмой IBM (International Business Machines Corporation), который и появился в 1981 г.

К особенностям открытой архитектуры относятся:

Модульный принцип построения компьютера, в соответствии с которым все его компоненты выполнены в виде законченных конструкций – модулей, имеющих стандартные размеры и стандартные средства сопряжения;

Наличие общей (системной) информационной шины, к которой можно подключать различные дополнительные устройства через соответствующие разъемные соединения;

Совместимость новых аппаратных и программных средств с их предыдущими версиями, основанная на принципе «сверху – вниз», что означает, что последующие версии должны поддерживать предыдущие.

Подавляющее число современных компьютеров имеют открытую архитектуру.

Закрытая архитектура не обладает характерными чертами открытой архитектуры и не позволяет обеспечить подключение дополнительных устройств, не предусмотренных разработчиком. Компьютеры, имеющие такую архитектуру, эффективны при решении узкоспециализированных задач, например вычислительных.

Условную классификацию компьютеров, приведенную в табл. 5.1, можно продолжить. Например, по организации вычислительных процессов компьютеры можно подразделить на четыре класса: без разделения ресурсов, с разделением ресурсов, многопользовательские с разделением ресурсов и мультипроцессорные; по режиму взаимодействия с пользователем компьютеры можно разделить на два класса: без взаимодействия с пользователем и интерактивные; по способу выполнения обработки информации компьютеры можно разделить на два класса: скалярные (последовательная обработка информации) и векторные (параллельная обработка информации); по совместимости аппаратных средств компьютеры можно разделить на два класса: компьютеры, имеющие аппаратную платформу IBM PC и аппаратную платформу Apple Macintosh и т. д.

Однако, поскольку предметом настоящего рассмотрения является в основном персональный компьютер (PersonalComputer – PC), то сделаем выводы по приведенной классификации применительно к персональному компьютеру. Согласно классификации современный персональный компьютер относится к четвертому поколению, является цифровым, общего назначения, индивидуального использования, ординарной производительности и имеет открытую архитектуру. Для персонального компьютера можно выделить классификационные признаки второго уровня, к которым отнесем функциональные возможности и конструктивные особенности. В соответствии с действующим с 1999 г. международным сертификационным стандартом в области персональных компьютеров (спецификация РС99) по функциональным возможностям персональные компьютеры (ПК) можно подразделить на следующие группы: массовые ПК (Consumer PC), деловые ПК (Office PC), портативные ПК (Mobile PC), ПК, используемые в качестве рабочих станций (Workstation PC), и ПК для развлечений (Entertainment PC).

Массовые компьютеры представляют значительную часть ПК и предназначены для широкого круга потребителей и решения соответствующих задач.

Деловые ПК широко используются в государственных учреждениях, фирмах и т. д. и имеют конфигурацию, соответствующую целям и задачам тех мест, где они используются.

Портативные ПК приобретают в настоящее время все большую популярность, поскольку позволяют работать пользователям не только в стационарно оборудованных рабочих местах и оснащаются средствами мобильной связи для подключения к сетевым ресурсам и, в частности, к глобальной сети Интернет.

ПК, используемые в качестве рабочих станций, предназначены для организации компьютерных сетей, в которых они выполняют функции клиентов или рабочих станций.

Развлекательные ПК оснащаются мощными мультимедийными средствами для воспроизведения высококачественного звука и графики.

По конструктивным особенностям ПК можно подразделяются на две группы: стационарные и переносные.

Стационарные ПК предназначены для организации автоматизированного рабочего места в офисе, учебном компьютерном классе и т. д.

Переносные или мобильные ПК подразделяются на следующие группы: портативные (Laptop), блокнотные (Notebook), суперблокнотные (Subnotebook), карманные, или наладонники (Palmtop).

Портативные ПК по своим техническим характеристикам и аппаратным возможностям приближаются к стационарным ПК, но имеют меньшие габаритные размеры и массу (4 ? 8 кг).

Дальнейшее развитие основного направления, связанного с конструированием средств электронной техники – микроминиатюризацией (при меньших габаритах получить те же характеристики), привело к созданию блокнотных, суперблокнотных и карманных ПК, которые по своим характеристикам и функциональным возможностям почти не уступают стационарным ПК. Основное отличие состоит в удобстве работы пользователя, габаритных размерах и массе.

5.2. Структура и аппаратные средства современного персонального компьютера

5.2.1. Структурная организация персонального компьютера

Современные компьютеры массового применения – персональные компьютеры имеют достаточно сложную структуру, которая определяет взаимосвязь между аппаратными средствами в технической системе, называемой компьютером. В процессе эволюции аппаратных и программных средств изменялась и структура персонального компьютера, однако без изменений остались пока основные принципы его структурной организации, сформулированные выдающимся математиком, профессором Принстонского университета США Джоном фон Нейманом (1903–1957) и его коллегами в 1946 г.

Сущность этих принципов сводится к следующему:

Информация представляется (кодируется) и обрабатывается (выполняются вычислительные и логические операции) в двоичной системе счисления, информация разбивается на отдельные машинные слова, каждое из которых обрабатывается в компьютере как единое целое;

Машинные слова, представляющие данные (числа) и команды (определяют наименование задаваемых операций), различаются по способу использования, но не по способу кодирования;

Машинные слова размещаются и хранятся в ячейках памяти компьютера под своими номерами, называемыми адресами слов;

Последовательность команд (алгоритм) определяет наименование производимых операций и слова (операнды), над которыми производятся эти операции, при этом алгоритм, представленный в форме операторов машинных команд, называется программой;

Порядок выполнения команд однозначно задается программой.

Компьютерное представление информации в двоичной системе счисления (двоичном коде) упрощает и повышает надежность аппаратных средств компьютера, поскольку реализовать технические устройства с двумя устойчивыми состояниями, равными логической единице и нулю, гораздо проще, чем при использовании других систем счисления.

В соответствии с данными принципами Дж. фон Нейманом и его коллегами была реализована структура компьютера, которая в настоящее время носит название классической (рис. 5.1).


Рис. 5.1. Классическая структура компьютера


В состав компьютера, приведенного на рис. 5.1 входят следующие структурные элементы и связи:

АЛУ (арифметико-логическое устройство) – выполняет арифметические и логические операции над информацией, представленной в двоичном коде, т. е. обеспечивает выполнение процедур по обработке данных;

УУ (устройство управления) – организует процесс выполнения программ;

ЗУ (запоминающее устройство) – предназначено для размещения и хранения последовательности команд (программ) и данных;

УВВ (устройства ввода-вывода) – обеспечивают ввод и вывод данных из компьютера для установления прямой и обратной связи между пользователем и компьютером;

Внутренние связи предназначены для обмена информацией между устройствами компьютера, они реализуются с помощью линий связей (электрических проводников), тонкими стрелками показаны линии, по которым передаются команды, а толстыми – данные.

Кратко опишем работу данного компьютера.

С помощью какого-либо устройства ввода в ЗУ вводится программа. УУ считывает содержимое ячейки памяти ЗУ, где находится первая команда, и организует ее выполнение. Эта команда может задавать выполнение арифметических и логических операций над данными с помощью АЛУ, чтение из памяти данных для выполнения этих операций, вывод данных на устройство вывода и т. д. Затем выполняется вторая команда, третья и т. д. УУ выполняет инструкции программы автоматически.

Структура современных персональных компьютеров отличается от классической структуры компьютера. Перечислим ниже основные отличия (особенности) :

1) АЛУ и УУ объединены в единое устройство, называемое микропроцессором (МП, центральный процессор, реализованный на СБИС), кроме того, в состав МП входит ряд других устройств, предназначенных для хранения, записи, считывания и обмена информацией;

2) применение специализированных устройств – контроллеров, которым передается часть функций МП, связанная с обменом информации и управлением работой устройств для ввода и вывода (внешних устройств) информации, такая децентрализация позволяет повысить эффективность работы компьютера в целом за счет сокращения времени простоя МП;

3) вместо отдельных линий связи между устройствами используется системная магистраль с соответствующими устройствами сопряжения. Наличие системной магистрали в персональном компьютере позволяет осуществить обмен информацией между устройствами компьютера, уменьшить число линий связи, подключить различные дополнительные устройства через соответствующие разъемные соединения и т. д.

Таким образом, с учетом перечисленных особенностей персональный компьютер отвечает принципам открытой архитектуры, и его структура, в которую вошли основные устройства, приобретает вид, показанный на рис. 5.2. Данная структура была предложена фирмой IBM, поэтому персональные компьютеры, имеющие такую структуру, называются IBM – совместимые (IBM PC).


Рис. 5.2. Структура персонального компьютера:

МП – микропроцессор; ПП – постоянная память; ОП – оперативная память: ВК – видеоконтроллер; ПИ – последовательный интерфейс; И – интерфейсы других внешних устройств; К – контроллер; ЗК – звуковой контроллер: ИП – параллельный интерфейс; СА – сетевой адаптер; НГМД – накопитель на гибких магнитных дисках; НЖМД – накопитель на жестких магнитных дисках; НОД – накопитель на оптических дисках; НМЛ – накопитель на магнитной ленте; ПУ – печатающее устройство; БП – блок питания и УО – устройства охлаждения.


На рис. 5.2 обоюдоострыми стрелками показаны шины, по которым обмен информацией между устройствами происходит в обоих направлениях.

Основные устройства, входящие в структуру стационарного персонального компьютера, группируют в блоки и устройства, которые имеют конструктивно законченный вид. Эти блоки определяют состав персонального компьютера и определяют меру полезности компьютера для пользователя.

В состав стационарного персонального компьютера входят:

Системный блок;

Внешние устройства.

В переносных, или мобильных, персональных компьютерах, как правило, системный блок и основная часть внешних устройств (клавиатура, монитор, мышь и т. д.) конструктивно представляют собой единое устройство.

К основным компонентам системного блока относятся: микропроцессор (МП), системная магистраль, устройства постоянной (ПП) и оперативной памяти (ОП), видеоконтроллер (ВК), звуковой контроллер (ЗК), контроллеры (К), устройства последовательного (ПИ), параллельного (ИП) и интерфейса (И) других внешних устройств, накопители на гибких (НГМД), жестких (НЖМД) и оптических дисках (НОД), накопитель на магнитной ленте (НМЛ), сетевой адаптер (СА), модем (встроенный), блок питания (БП) и устройства охлаждения (УО).

Указанные устройства устанавливаются в корпус системного блока на соответствующие посадочные места, конструктивные размеры которого стандартизированы и имеет форм-фактор AT и АТХ . Кроме того, корпус системного блока имеет обычно один из двух вариантов исполнения: настольный горизонтального типа (desktop) и настольный вертикального типа (tower). Соответственно вариант вертикального исполнения может иметь несколько модификаций: MiniTower, MidiTower, BigTower, SuperBigTower и File-Server . Отличаются они друг от друга числом отсеков для установки устройств формата 3,5 и 5 дюймов. В корпусе системного блока размещаются также блок питания и устройства охлаждения. Блок питания обеспечивает электропитание всех устройств системного блока и ряда внешних устройств и подключается к промышленной сети переменного тока напряжением 220 В и частотой 50 Гц. В переносных персональных компьютерах электропитание обеспечивается за счет выносного блока питания, подключаемого к сети или к аккумуляторам, который обеспечивает автономную работу в течение 1,5–4 часов. В системном блоке размещены и устройства охлаждения, поскольку отдельные компоненты могут сильно нагреваться: блок питания, микропроцессор, видеоконтроллер (видеоадаптер) и т. д. В качестве охлаждающих устройств используются в основном радиаторы и вентиляторы (кулеры).

Таким образом, в системном блоке стационарного персонального компьютера размещаются основные компоненты, обеспечивающие выполнение компьютерных программ на аппаратном уровне.

Внешние устройства (по отношению к системному блоку) по функциональному назначению можно представить в виде нескольких групп: устройства ввода и вывода информации, устройства, выполняющие одновременно функции ввода и вывода информации, внешние запоминающие устройства.

К устройствам ввода информации относятся клавиатура, координатные устройства ввода (манипуляторы типа мышь, трекбол, контактная или сенсорная панель, джойстик), сканер, цифровые камеры (видеокамеры и фотоаппараты), микрофон.

К устройствам вывода информации относятся монитор, печатающие устройства (ПУ, принтер и графопостроитель), звуковые колонки и наушники.

К устройствам, выполняющим функции ввода и вывода информации относятся сетевой адаптер, модем (модулятор – демодулятор), звуковая плата.

К внешним запоминающим устройствам относятся: внешние накопители на гибких и жестких магнитных дисках, внешние накопители на оптических и магнитооптических дисках, накопители на основе флэш-памяти и т. д.

5.2.2. Аппаратные средства персонального компьютера

5.2.2.1. Основные компоненты системного блока

Рассмотрим более подробно основные компоненты системного блока.

Часть компонентов системного блока конструктивно располагается на системной или материнской плате (motherboard или mainboard). Плата представляет собой конструктивный узел, на котором размещаются микросхемы устройств, и обеспечивается их необходимое электрическое соединение между собой. Системная плата имеет разъемы для электрического соединения с другими платами компьютера. Таким образом, системная плата является важнейшим конструктивным узлом системного блока, связывающим основные его компоненты и обеспечивающим их взаимодействие. От основных характеристик элементов, установленных на системной плате, зависят производительность персонального компьютера и его функциональные возможности. Системная плата является комплектующим изделием, т. е. производится и поставляется различными фирмами, которые при ее разработке ориентируются на определенный вид микропроцессора. Среди наиболее крупных производителей системных плат в настоящее время можно выделить компании Intel (Integrated Electronics, США), SiS (Silicon Integrated Systems Corporation, США) и VIA Technologies (Тайвань).

На системной плате устанавливаются: микропроцессор, набор микросхем системной логики, модули (устройства) постоянной и оперативной памяти, разъемы для установки и подключения микропроцессора, модулей памяти, внешних запоминающих устройств, источника питания и т. д., кроме того, на материнской плате имеется система шин, обеспечивающая обмен информацией между элементами установленных на системную плату. На рис. 5.3 приведен внешний вид одной из моделей (Intel 845GE) системной платы фирмы Intel.

Рис. 5.3. Внешний вид системной платы фирмы Intel (Intel 845GE)


В настоящее время общепризнанным лидером по разработке и производству системных плат является компания Intel, поэтому терминология, связанная с этими изделиями, является англоязычной. Для правильной оценки конкретной продукции этой компании желательно знать эту терминологию. На рис. 5.4 приведена упрощенная функциональная схема системной платы современного персонального компьютера с обозначенем отдельных ее элементов на английском языке:


Рис. 5.4. Функциональная схема системной платы персонального компьютера


CPU (Central Processing Unit) – микропроцессор (МП);

Host Bus – шина микропроцессора;

Chipset – набор микросхем, установленных на системной плате для обеспечения обмена данными между CPU и периферийными устройствами. Chipset определяет функциональные возможности материнской платы: тип и объем оперативной и кэш-памяти, тактовую частоту системной шины, поддерживаемые шины и т. д.;

NORTH BRIDGE (северный мост) – микросхема системного контроллера, или Memory Controller Hub (центр управления памятью);

SOUTH BRIDGE (южный мост) – микросхема контроллера ввода-вывода или I/O Controller Hub (центр управления вводом-выводом);

Main Memory – микросхемы главной (оперативной) памяти, которые в данном случае представляют собой микросхемы быстродействующей динамической памяти с произвольным доступом RDRAM (Rambus Dynamic Random Access Memory);

Direct RDRAM Interface – интерфейс прямого доступа к памяти;

Graphics Controller – контроллер управления графическими устройствами;

PCI Bus (Peripheral Component Interconnect Bus) – системная шина, предназначенная для обмена информацией между микропроцессором и другими (внешними) устройствами;

PCI Slots – разъемы для подключения внешних устройств;

IDE (Integrated Device Electronics) Ports – порты (разъемы) для подключения внешних накопителей информации;

USB (Universal Serial Bus – универсальная последовательная шина) Ports – порты (разъемы) для подключения низкоскоростных внешних устройств;

Hub Interface – интерфейс обмена информацией между микросхемами системного контроллера и контроллера ввода-вывода, входящих в состав чипсета;

Flash BIOS (Basic Input Output System) – микросхема постоянной памяти, представляет собой энергонезависимую память с возможностью перезаписи информации непосредственно на системной плате;

LAN (local Area Network) Connect – разъем для подключения к локальной сети;

Keyboard – клавиатура;

FD (Floppy Disk) – накопитель на гибких магнитных дисках;

Mouse – мышь.

Рассмотрим основные элементы системной платы.

Микропроцессор (МП) – важнейшее устройство персонального компьютера, отвечающего за процессы управления и выполнения арифметических и логических операций над данными представляет собой функционально законченное программно-управляемое устройство. Современные микропроцессоры реализованы на сверхбольших интегральных схемах (СБИС). От основныхарактеристик МП в значительной степени зависит эффективность использования персонального компьютера в целом.

Своим происхождением слово «микропроцессор» обязано микроэлектронной технике и технике автоматического регулирования и управления процессами. В России наибольшее распространение получили МП двух компаний – Intel и AMD (Advanced Micro Devices). В процессе развития МП компании Intel сменилось несколько поколений, которые можно рассматривать как семейство микропроцессоров Intel. Каждое поколение МП характеризуется соответствующим уровнем схемотехнических и технологических решений, положенных в основу их производства. Эти решения определяли и определяют основные характеристики МП. В табл. 5.2 приведены поколения МП Intel и некоторые ихарактеристики.

Таблица 5.2

Деление МП на поколения, приведенное в табл. 5.2, условно. МП третьего поколения Intel 8080 были выбраны компанией IBM для установки в свой первый персональный компьютер IBM PC/XT (XT-eXTra), выпущенный в 1981 г., а МП Intel 80286 был установлен на персональных компьютерах IBM PC/AT (Advanced Technology – передовая технология). В дальнейшем компания IBM стала использовать тип МП в названии персонального компьютера. Например, компьютер, в котором применялся МП Intel Pentium, стал называться Pentium. Наряду с производством МП Pentium //компания Intel освоила производство МП под названием Celeron (упрощенный вариант Pentium). Современные модели МП Celeron по своим основным характеристикам немногим уступают моделям МП Pentium. Более подробно об отличительных особенностях поколений МП семейства Intel можно прочесть в соответствующей литературе . Наряду с компанией Intel российский компьютерный рынок освоила и компания AMD, которая выпускает МП под названием ATHLON и DURON. Данные МП по своим характеристикам в основном соответствуют МП компании Intel.

Современный МП является сложным электронным устройством, которое включает в себя следующие основные компоненты: арифметико-логическое устройство (АЛУ), устройство управления и синхронизации (УУ), регистры общего назначения (РОН) и внутреннюю кэш-память, внутреннюю шину. О назначении АЛУ и УУ говорилось ранее. РОН предназначены для временного хранения операндов исполняемой команды и результатов вычислений. Внутренняя кэш-память (от англ. cache – запас) применяется для ускорения доступа к информации, размещенной в оперативной памяти (ОП) компьютера. Так как быстродействие ОП ниже, чем МП, то между ними устанавливают промежуточную (буферную память), называемую кэш-памятью. Кэш-память МП – сверхбыстродействующее запоминающее устройство, в которое записывается та часть информации из ОП, с которой МП работает в данный момент. В персональных компьютерах используется в основном двухуровневая кэш-память: первый уровень, обозначаемый L1, реализован непосредственно в самом МП и имеет информационный объем от единиц до десятков килобайт; второй уровень L2 реализован в виде микросхемы и устанавливается на системную плату. Информационный объем кэш-памяти второго уровня может составлять от сотен до тысяч килобайт. Объем кэш-памяти зависит от конкретного типа МП и может иметь информационный объем до нескольких Мегабайт. Время доступа к информации в таких запоминающих устройствах варьируется от единиц до десятков наносекунд (не).

Устройства, входящие в МП, в соответствии с определенными принципами организуются в систему, называемую архитектурой. Архитектура МП зависит от системы команд, применяемой в МП, под которой понимается совокупность всех возможных команд, которые может выполнить МП над данными.

В современных ПК применяются МП двух основных архитектур:

CISC (Complex Instruction Set Computer) – процессор с полной системой команд;

RISC (Reduced Instruction Set Computer) – процессор с сокращенным набором команд.

Каждая из этих архитектур имеет свои особенности. CISC-процессоры имеют большой набор микрокоманд (в среднем до 400 в зависимости от конкретного типа МП), но при этом усложняется устройство управления МП и увеличивается время исполнения команд на микропрограммном уровне. RISC-процессоры имеют ограниченный набор микрокоманд (в среднем до 100), что упрощает устройство управления МП, и сокращают время выполнения команд. Однако для реализации некоторых действий в RISC-процессорах требуется большее число микрокоманд, чем в CISC-процессорах . Таким образом, считается, что CISC-процессоры являются более универсальными, но менее быстродействующими по сравнению с RISC-процессорами . МП компании Intel, устанавливаемые в ПК фирмы IBM, имеют архитектуру CISC, в которой используются некоторые особенности, характерные для архитектуры RISC-процессоров .

К характеристикам МП относятся:

Разрядность МП, которая определяет число двоичных разрядов (бит), одновременно обрабатываемых при выполнении одной команды. МП Pentium IV имеют 64 разрядную шину данных;

Тактовая частота МП, определяющая количество элементарных операций, выполняемых МП в секунду. Некоторые модели МП Pentium IV, используемые в настоящее время в ПК, имеют тактовую частоту до 4 ГГц;

Частота переключения шины МП (Host Bus, см. рис. 5.4), которая определяет ее пропускную способность. Например, если частота переключения составляет 800 МГц, то пропускная способность шины при ее разрядности 64 бит приблизительно составит 64 · 800 = 6 Гбайт/с;

Информационный объем кэш-памяти уровней L1 и L2;

Напряжение питания (В);

Рассеиваемая электрическая мощность (Вт) и т. д.

В качестве примера рассмотрим следующую широко практикуемую запись обозначения МП в прайс-листах торгующих организаций:


CPU Intel Pentium 4 661 3.6 ГГц/ 2Мб/ 800МГц BOX 775-LGA.

Intel – компания производитель МП;

Pentium 4 661 – модель МП;

3.6 ГГц – тактовая частота МП;

2 Мб – информационный объем кэш-памяти в мегабайтах уровня L2 (2048 Кбайт), уровень L1 для данного МП составляет 16 Кбайт;

800МГц – частота переключения шины МП;

BOX 775-LGA – тип корпуса и разъема (socket) МП.


Наряду с МП на системной плате присутствует набор микросхем системной логики, обеспечивающий логическую организацию работы МП, памяти и устройств ввода-вывода, который называется чипсет (англ. chipset – chip – микросхема, set – набор). В данный набор входят: системный контроллер, называемый NORTH BRIDGE, или центр управления памятью, и системный контроллер ввода-вывода – SOUTH BRIDGE, или центр управления вводом-выводом. Современные чипсеты выполняют функции следующих устройств компьютера: контроллера оперативной памяти; контроллера кэш-памяти; контроллера прямого доступа к памяти (DMA); контроллера прерываний; моста шины PCI; контроллера интерфейса IDE и USB; контроллера клавиатуры и т. д. Производителями микросхем системной логики являются компании Intel (IntegratedElectronics, США), AMD (AdvancedMicro Devices), SiS (Silicon Integrated Systems Corporation, США), VIA Technologies (Тайвань) и т. д.

Важнейшими элементами системной платы являются устройства ОП и ПП, которые называются также устройствами основной памяти компьютера. ОП, или как ее еще называют в англоязычной технической литературе – RAM (Random Access Memory), предназначена для хранения исполняемых программ и данных. ОП обеспечивает хранение информации лишь в течение сеанса работы компьютера, и после его выключения информация безвозвратно теряется. ОП представляет собой набор микросхем, устанавливаемых на системную плату. Существует два вида ОП, отличающиеся друг от друга техническими характеристиками: динамическая ОП (DRAM – Dynamic RAM) и статическая ОП (Static RAM). Динамическая и статическая ОП имеют свои недостатки и преимущества, однако в ПК в качестве ОП в настоящее время используется в основном динамическая ОП. Более подробно о физических принципах построения динамической и статической ОП и их конструктивных особенностях можно прочесть в соответствующей литературе . К основным характеристикам ОП можно отнести:

Информационный объем (в ПК может достигать единиц гигабайт, в среднем 512 Мбайт);

Время доступа к данным составляет несколько десятков наносекунд (в среднем 70 не).

ПП, или ROM (Read Only Memory), предназначена для хранения постоянной, т. е. неизменяемой, информации и доступна лишь для чтения программ и данных, записанных при изготовлении компьютера. После выключения компьютера информация в ПП сохраняется, т. е. данная память является энергонезависимой. В ПП хранится системная информация: программа начальной загрузки компьютера, программы тестирования устройств компьютера и т. д. Программа начальной загрузки является частью операционной системы и носит название базовой системы ввода-вывода (BIOS – Basic Input Output System). ПП представляет собой микросхему, которая может быть однократно программируемой (ПЗУ – постоянное запоминающее устройство) или многократно программируемой (ППЗУ – перепрограммируемое постоянное запоминающее устройство). В настоящее время в ПК используются в основном ППЗУ. Например, на рис. 5.4 ППЗУ обозначено как Flash BIOS.

Для обмена информацией между компонентами ПК используется системная магистраль, которая включает в себя два типа шин: локальную и системную. Под шинами понимается совокупность проводных каналов связей (электрических линий), конструктивно располагающихся на системной плате. В ПК тип используемых шин определяется системной платой.

В качестве локальных шин используются шины, непосредственно подключенные к МП, т. е. это шина МП (Host Bus, см. рис. 5.4), шина для подключения видеоконтроллера, управляющего монитором, шина для подключения внешних накопителей, шина для подключения средне– и низкоскоростных внешних устройств и т. д.

Посредством локальной шины МП происходит обмен информацией между МП и чипсетом с высокой скоростью. Данная локальная шина работает на частоте несколько сотен мегагерц.

Локальная шина для подключения видеоконтроллера, которая в ПК называется также AGP (Advanced Graphic Port), позволяет организовать непосредственную связь между видеоконтроллером и ОП, что значительно повышает скорость обмена видеоданными между ними за счет устранения задержек при обращении к ОП. Эта шина является 32-разрядной и работает на частоте 66 МГц.

В качестве шин для подключения внешних накопителей информации могут использоваться шины на основе разных стандартов, однако наиболее широко используются в ПК шины IDE (Integrated Device Electronics) или ее модификация EIDE (Enhanced IDE), а также шина SCSI (Small Computer System Interface).

Шина для подключения средне– и низкоскоростных внешних устройств носит название USB (Universal Serial Bus), в настоящее время широко используется шина USB версии интерфейса 2.0. Скорость передачи данных по данной шине достигает 480 Мбит/с.

Системная, или общая, шина предназначена для обеспечения обмена информацией между внешними устройствами и МП. Системная шина состоит из трех отдельных шин: шины адреса, шины данных и шины управления. Каждая из этих шин характеризуется своей разрядностью, т. е. числом параллельных проводников для передачи информации, и тактовой частотой, т. е. частотой, на которой работает контроллер шины при формировании циклов передачи информации.

Шина адреса предназначена для передачи адреса ячейки памяти или порта ввода-вывода. Разрядность шины адреса определяет максимальное число ячеек памяти, к которым может обратиться МП.

Шина данных обеспечивает передачу команд и данных. Разрядность данной шины во многом определяет пропускную способность системной шины и производительность ПК.

Шина управления предназначена для управления системной шиной, т. е. обеспечивает ее работу. Разрядность данной шины определяется алгоритмом ее работы, который задается контроллером шины.

В качестве системной шины в настоящее время в ПК преимущественно используется шина PCI (Peripheral Component Interconnect Bus – взаимосвязь периферийных компонентов). Шина PC/была разработана компанией Intel в 1992 г. Шина данных PCI может быть 32– или 64-разрядной, тактовая частота контроллера этой шины соответственно равна 33 или 66 МГц. Шина адреса имеет 32 разряда. До системной шины РС/в ПК использовались системные шины ISA (Industry Standard Architecture), EISA (Extended Industry Standard Architecture), MCA (Micro Channel Architecture), VIB (VESA EocalBus), разработанная в 1992 г. ассоциацией стандартов видеооборудования VESA (Video Electronics Standards Association). Более подробно об этих системных шинах можно прочесть в соответствующей литературе .

Кроме системной платы, как уже отмечалось, в системный блок устанавливаются накопители информации на гибких (НГМД), жестких (НЖМД) и оптических дисках (НОД), накопитель на магнитной ленте (НМЛ), сетевой адаптер (СА), модем (встроенный), блок питания (БП) и устройства охлаждения (УО).

Накопители информации НГМД, НЖМД, НОД, НМЛ и т. д. достаточно подробно описаны в гл. 6.

Сетевой адаптер, или сетевая карта, устанавливается в ПК в том случае, если его необходимо подключить к компьютерной сети, т. е. совокупности компьютеров, между которыми осуществляется обмен информацией по высокоскоростным каналам связи: радиоканалам, оптоволоконным, кабельным и т. д. Сетевая карта имеет свой уникальный адрес, который однозначно определяет адрес ПК в сети. Данные, необходимые для передачи с одного компьютера на другой, сетевая карта формирует в специальные пакеты и пересылает их адресату – другой сетевой карте, установленной в другом компьютере сети. Данные поступают к сетевой карте по системной магистрали ПК. Скорость передачи данных по сети через сетевые карты составляет от 10 до 100 Мбит/с. Крупными производителями сетевых карт и сетевого оборудования являются компании Intel, Linksys, ZyXEL, Eline и т. д.

Модем (модулятор – демодулятор) представляет собой устройство для передачи данных в цифровом виде по аналоговым линиям связи, предназначенное для подключения ПК к глобальной сети Internet (Интернет) по обычной телефонной или специальной линии. Модемы подразделяются на аналоговые и цифровые, встроенные в системный блок и внешние. Цифровые данные, поступающие в аналоговый модем из ПК, преобразуются в нем с помощью модулятора в непрерывный аналоговый сигнал и передаются по телефонной или специальной линии адресату. Демодулятор осуществляет обратное преобразование сигнала (демодуляцию), т. е. преобразует аналоговый сигнал в цифровой сигнал, и передает восстановленные цифровые данные в ПК. Скорость передачи данных из сети и в сеть Интернет у аналоговых модемов невелика и составляет в зависимости от поддерживаемого модемом протокола передачи данных 33,6 или 56,6 Кбит/с. Цифровые модемы используют более совершенные технологии передачи цифровых данных (например, технологии xDSI), но стоят пока существенно дороже аналоговых. Скорость передачи данных в таких модемах может достигать 8 Мбит/с.

Внутренние модемы конструктивно выполнены в виде платы, на которой размещены радиоэлектронные компоненты. Устанавливаются такие модемы в системный блок и подключаются к системной магистрали ПК через разъем (слот) на материнской плате. К разъему вход-выход самого модема подключается телефонная или специальная линия.

Внешние по отношению к системному блоку модемы конструктивно выполнены в виде функционально законченных устройств. Подключается модем через соответствующий порт (указывается в техническом описании на внешний модем) системного блока ПК.

5.2.2.2. Устройства ввода информации в персональный компьютер

В качестве устройств ввода информации в ПК используются клавиатура, координатные устройства ввода (манипуляторы типа мышь, трекбол, контактная или сенсорная панель, джойстик), сканер, цифровые камеры (цифровые фотоаппараты, видеокамеры), микрофон и т. д.

Клавиатурой (keyboard) называется устройство для ручного ввода информации в ПК. Современные типы клавиатур различаются конструктивным исполнением, количеством и назначением клавиш, способом соединения с системным блоком, способом формирования кода символа при нажатии клавиши и т. д.

Конструктивное исполнение во многом определяется фирмой-изготовителем клавиатуры, которая, как правило, учитывает особенности операционной системы, с которой работает пользователь (например, клавиатура, ориентированная на использование операционной системы семейства Windows).

Клавиатуры различаются количеством и назначением клавиш. Для IBM-совместимых ПК за основу принят стандарт клавиатуры, имеющей 101 клавишу, при этом клавиши сгруппированы в блоки: блок функциональных клавиш (F1, F2, F3 и т. д.), блок букв, цифр и вспомогательных символов; блок управляющих клавиш (Shift, Ctrl, Alt и т. д.); блок мультимедийных клавиш; блок цифровых клавиш.

По способу соединения с системным блоком различаются проводные и беспроводные клавиатуры. В IBM-совместимых ПК проводная клавиатура соединяется с системным блоком посредством электрического кабеля, который подключается к СОМ, PS/2 или USB портам системного блока. В беспроводной клавиатуре передача информации в системный блок происходит с помощью передатчика инфракрасного излучения, приемник инфракрасного излучения подключается к порту USB.

В IBM-совместимых ПК стандартной конфигурации имеются два последовательных порта – СОМ1 и COM2 (от англ. communicate – передавать), в которых данные, предварительно сформированные в пакеты, передаются побитно. Передача данных происходит под управлением интерфейса (протокол передачи) RS-232. Обмен данными в соответствии со спецификацией протокола RS-232 происходит последовательно, методом асинхронной передачи. При этом каждому байту предшествует так называемый старт-бит (всегда имеющий значение логического). Он сигнализирует приемнику о начале пакета. За ним следуют биты данных и (не всегда) бит четности. Завершает посылку стоп-бит, сигнализирующий о начале паузы между пакетами.

Выпускаемая в настоящее время клавиатура не подключается к системному блоку ПК посредством порта СОМ, поскольку данный порт, также как и LPT (параллельный), ориентирован на архитектуру ПК, в которых применялась системная шина ISA. Для подключения клавиатуры используются в основном последовательные порты ввода данных PS/2 и USB, работа которых осуществляется под управлением протоколов передачи данных PS/2 и USB.

По способу формирования кода символа при нажатии клавиши в современной клавиатуре применяется способ, при котором микроконтроллер (клавиатурный микропроцессор) последовательно опрашивает клавиши, формирует двоичный скан-код клавиши и передает его в системный блок. При таком способе передается не код символа, нарисованный на клавише, а код клавиши, которому затем программным путем присваивается соответствующий символ. Такой способ позволяет легко менять раскладку клавиатуры с латинской на кириллицу и наоборот при помощи управляющих клавиш, например (знак плюс означает совместное нажатие клавиш).

К координатным устройствам ввода относятся манипуляторы типа мышь, трекбол, контактная или сенсорная панель (TouchPad), джойстик. Данные устройства позволяют перемещать курсор или другие объекты соответствующих программ по двухмерному пространству экрана монитора с целью облегчения взаимодействия пользователя с ПК при вводе информации. Многие прикладные и системные компьютерные программы рассчитаны на интенсивное использование данных устройств.

Манипулятор типа мышь был изобретен Д. Энгельбартом в 1960-х гг. XX в. в США и свое название получил из-за некоторого сходства с настоящей мышью. При перемещении мыши по гладкой поверхности формируются два сигнала, которые передаются в системный блок и интерпретируются программой управления мышью как координаты точки двухмерного пространства экрана. Результатом этого является перемещение курсора по экрану. При нажатии клавиш (кнопок) или ролика, а также вращения его пальцем формируются и передаются сигналы в системный блок, которые затем однозначно интерпретируются программой управления мышью. С помощью нажатий на клавиши мыши или ролика, а также его вращения можно производить различные действия, при этом используются как одиночные, так и двойные нажатия (щелчки). Действия, которые следуют после таких нажатий клавиш мыши, зависят от конкретной компьютерной программы. Например, одинарный щелчок левой кнопкой мыши или удерживание кнопки позволяет выделять или перемещать объекты на рабочем столе операционных систем семейства Windows, двойной щелчок мышью по пиктограмме вызывает запуск соответствующей программы, щелчок правой кнопкой вызывает контекстное меню и т. д.

Манипуляторы типа мышь различаются по конструктивному исполнению, принципу работы, способу соединения с системным блоком и т. д.

Конструктивное исполнение мыши зависит от фирмы-производителя (Microsoft, Genius, Samsung и т. д.) и различается по внешнему виду и количеству кнопок. В IBM-совместимых ПК используются двух– и трехкнопочные мыши.

По принципу работы мыши подразделяются на электронно-механические и оптоэлектронные. Электронно-механическая мышь состоит из резинового шарика, вращающегося при перемещении мыши, двух роликов, расположенных под прямым углом и соприкасающихся с резиновым шариком, а также электронной схемы, преобразующей вращение роликов в последовательность электрических импульсов, передаваемых в системный блок ПК. Все компоненты электронно-механической мыши помещаются в корпус. В оптоэлектронной мыши отсутствуют подвижные механические элементы, а количество электрических импульсов, пропорциональных перемещению мыши и передаваемых в системный блок, формируются с помощью оптоэлектронных схем. Оптоэлектронные мыши значительно надежнее электронно-механических.

По способу соединения с системным блоком различаются проводные и беспроводные мыши. В IBM-совместимых ПК проводная мышь соединяется с системным блоком посредством электрического кабеля, который подключается к PS/2– или USB-портам системного блока. В беспроводной мыши передача информации в системный блок происходит с помощью передатчика инфракрасного излучения, приемник инфракрасного излучения подключается к порту USB.

Кроме мыши к координатным устройствам ввода относятся также трекбол, контактная, или сенсорная, панель, джойстик.

Трекбол по своему принципу действия аналогичен электронно-механической мыши, разница состоит лишь в том, что вместо перемещения мыши для вращения шарика, пользователь пальцем вращает сам шарик, который встраивается обычно в верхнюю часть клавиатуры ПК или корпуса мобильного ПК.

Сенсорная панель (TouchPad) представляет собой панель прямоугольной формы, которая чувствительна к нажатию пальцев и выполняет те же функции, что и манипулятор типа мышь. При касании пальцем руки экрана сенсорной панели в области касания происходит изменение электрических параметров (например, электрического заряда), что фиксируется электронным устройством сенсорной панели, и затем изменение электрического сигнала передается в контроллер, где с помощью программы обработки определяются координаты пальца на поверхности панели и соответственно координаты курсора на экране монитора ПК. Одинарный или двойной щелчок пальцем по экрану сенсорной панели соответствует нажатию кнопок мыши. Сенсорная панель используется преимущественно в мобильных ПК и встраивается в их корпус.

Джойстик – это устройство для ручного управления движением курсора на экране монитора. При этом в качестве курсора могут выступать различные объекты виртуальной реальности: люди, животные, автомобили и т. д. Используется джойстик с игровыми программами, т. е. является игровым манипулятором.

Для ввода графической информации в ПК используются различные устройства: дигитайзеры (графические планшеты), сканеры, цифровые фотоаппараты и цифровые видеокамеры.

Дигитайзер (digitizer), или графический планшет, представляет собой устройство, предназначенное для ввода в ПК графической информации повышенной сложности рукописным способом. Применение дигитайзеров обусловлено тем, что создание сложного графического изображения в графических редакторах (специальных компьютерных программах, например Paint или Adobe Photoshop) с помощью мыши – крайне затруднительное занятие.

Конструктивно дигитайзер состоит из двух основных компонентов: основания (планшета с рабочей поверхностью) и указателя – пера, напоминающего обычную шариковую ручку, перемещаемого по рабочей поверхности планшета и позволяющего создавать графическое изображение. Принцип работы подавляющего числа современных дигитайзеров основан на методе электромагнитной индукции: указатель при прикосновении к рабочей поверхности излучает сигнал, который принимает плоская антенна, находящаяся под рабочей поверхностью планшета. Антенна представляет собой металлическую сетку, конструктивно выполненную из проволоки или на основе печатной схемы, шаг такой сетки варьируется от 3 до 6 мм. Приняв сигнал, антенна передает его в электронное устройство обработки дигитайзера, где происходит его преобразование в двоичный код, соответствующий местоположению указателя на рабочей поверхности планшета, и далее код передается с помощью электрического кабеля и соответствующего порта ввода (USB – последовательный порт) в системный блок ПК. К основным характеристикам дигитайзера можно отнести: разрешающую способность, т. е. число линий на дюйм (Ipi – line per inch), размеры рабочей области, чувствительность к нажатию и т. д.

Например, запись в прайс-листе организации, торгующей дигитайзерами, может быть представлена в следующем виде:


Genius G-Pen 340 (3" х 4", 2000 lpi, 1024 уровня, USB).

Представим данную запись в развернутом виде:

Genius – компания-производитель;

G-Pen 340 – модель дигитайзера;

3" х 4" – рабочая область планшета (примерно 76 мм х 102 мм);

2000 lpi – разрешающая способность;

1024 уровня – чувствительность к нажатию на рабочую поверхность планшета;

USB – порт (интерфейс).


При подключении дигитайзера к ПК посредством интерфейса USB и его автоматического определения операционной системой Windows ХР он готов к работе, однако для управления чувствительностью к нажатию указателя потребуется специальная компьютерная программа – драйвер, которая поставляется совместно с дигитайзером.

Основными компаниями – производителями дигитайзеров являются Wacom (Япония), CalComp (США), Genius (Тайвань), Aiptek (Тайвань) и т. д.

Сканеры (от англ. scan – пристально разглядывать) являются самыми распространенными в настоящее время устройствами для ввода графической и текстовой информации с бумажного листа или пленки. В зависимости от возможности воспроизведения цвета графического изображения они подразделяются на черно-белые и цветные, а по конструктивному признаку – на ручные, роликовые и планшетного типа.

Принцип преобразования графического изображения в цифровую форму в сканерах основан на сканировании изображения, т. е. его последовательного считывания по строкам, преобразования в двоичный код и последующего ввода в ПК. В процессе сканирования изображения оно освещается с помощью специальных источников светового излучения, и затем отраженный свет воспринимается оптической системой сканера. Таким образом, сканер преобразует графическое изображение во множество точек, определяя для каждой точки ее координаты и цвет. По этим данным после соответствующей обработки на экране монитора ПК воспроизводится копия графического изображения.

В современных цветных сканерах в основном используется источник излучения белого света, а в оптической системе устанавливается специальный RGB-фильтр, который и определяет по отраженному свету в процессе сканирования цвет точек, из которого состоит графическое изображение. В черно-белых сканерах такой фильтр отсутствует.

Ручной сканер представляет собой устройство, в котором процесс сканирования изображения не является автоматическим, т. е. осуществляется вручную, путем его перемещения относительно графического изображения. Такой сканер позволяет сканировать (считывать) изображение выборочно (частично), а для сканирования всего изображения целиком необходимо производить несколько перемещений (проходов). Для совмещения полученных частей изображения используется специальное программное обеспечение, которое поставляется вместе со сканерами ручного типа. В настоящее время ручные сканеры не пользуются широкой популярностью у владельцев ПК из-за низкой степени автоматизации процесса сканирования изображения.

Роликовый сканер – это устройство, в котором подача листов с графическими изображениями для ввода в компьютер происходит автоматически, т. е. такие сканеры предназначены для пакетной обработки листовых документов, содержащих графическую или текстовую информацию. В этих сканерах лист с изображением или текстом перемещается относительно сканирующей головки. Данный тип сканеров в ПК практически не используется.

Среди перечисленных типов сканеров наиболее широко применяются планшетные сканеры, предназначенные в основном для офисного и домашнего использования, иногда их называют SOHO- сканеры (SOHO – от англ. Small Office Ноте Office). Сканеры этого типа появились в 1980-х гг. XX в. и благодаря оптимальному соотношению функциональных возможностей и удобству использования завоевали у пользователей ПК наибольшую популярность. В планшетных сканерах лист с изображением жестко фиксируется, что обеспечивает высокое качество сканирования и удобство в работе.

Конструктивно планшетный сканер состоит из следующих основных компонентов: корпуса, прозрачного стекла, сканирующей каретки (головки), блока управления, аналогово-цифрового преобразователя (АЦП), микропроцессора (МП), контроллера интерфейса, протяжного механизма, двигателя, блока питания и ряда дополнительных устройств.

Корпуса большинства выпускаемых сегодня планшетных сканеров для офиса и дома в основном сделаны из пластмассы и имеют прямоугольную форму. Для придания прочности корпусу в нем используют специальные элементы, называемые ребрами жесткости. К корпусу планшетного сканера предъявляют достаточно жесткие требования в плане его герметичности, поскольку оптический блок сканера не допускает попадания на него пыли.

Прозрачное стекло находится под крышкой корпуса и предназначено для размещения на нем листа бумаги определенного формата (в основном А4) с нанесенным на лист графической или текстовой информацией или пленки с графическим изображением. После размещения на стекле лист или пленка накрываются крышкой сканера.

Сканирующая каретка – основной подвижный модуль планшетного сканера – устанавливается на лафет и вместе с ним перемещается по направляющим салазкам вдоль корпуса. Данный модуль состоит из следующих компонентов: оптического блока с системой линз и зеркал, светочувствительной матрицы, источника света и инвертора. В качестве основных элементов оптического блока могут использоваться микролинзы с самофокусировкой либо оптический объектив с оптическими зеркалами. Выбор этих элементов зависит от применяемой в сканере светочувствительной матрицы. Микролинзы с самофокусировкой используются совместно со светочувствительной матрицей типа CIS (Contact Image Sensor – контактный оптический датчик), а оптический объектив с оптическими зеркалами со светочувствительной матрицей CCD (Charge Coupled Device – прибор с зарядовой связью).

Сканирующая каретка, в которой используется матрица типа CIS, не имеет лампы подсветки (источника света), оптического объектива и зеркал, а приемный элемент, равный по ширине всему рабочему полю сканирования, состоит из светодиодной линейки (источник света), освещающей поверхность сканируемого изображения, самофокусирующихся микролинз и приемных датчиков (сенсоров) изображения. Отраженный от сканируемого изображения свет проецируется на перемещающийся над изображением вместе с кареткой приемный элемент, фокусируется микролинзами и попадает на приемные датчики, которые преобразуют падающий на них свет в электрический сигнал. Затем этот сигнал усиливается и поступает на вход АЦП. Сканирующая каретка, в которой используется матрица типа CIS, получается очень компактной, что дает возможность создавать достаточно тонкие и легкие сканеры, потребляющие незначительное количество электрической энергии. Однако сканеры, в которых используется эта матрица, имеют ряд недостатков, среди которых можно выделить небольшую глубину фокусировки изображения (глубину резкости). Если поместить на планшет такого сканера толстую книгу, то сканированное изображение получится с размытой полосой посередине, т. е. в том месте, где листы книги не соприкасается со стеклом. Кроме того, сканеры, в которых используется матрица типа CIS, обладают невысокой, по сравнению со сканерами на основе CCD разрешающей способностью – порядка 1200 dpi.

Сканирующая каретка, в которой используется матрица типа CCD, имеет лампу подсветки, оптический объектив и сложную систему зеркал, а приемный элемент представляет линейку приборов с зарядовой связью (матрицу CCD). В качестве лампы подсветки применяется в основном люминесцентная лампа с холодным катодом. Для свечения эту лампу необходимо подключить к высоковольтному источнику переменного напряжения, в качестве которого применяется отдельный блок, называемый инвертором. Матрица CCD состоит из приборов с зарядовой связью, которые представляют собой светочувствительные элементы, способные накапливать электрический заряд, пропорциональный уровню освещенности. Отраженный от сканируемого изображения свет проецируется на перемещающийся над изображением вместе с кареткой приемный элемент. Отраженный свет предварительно фокусируется с помощью оптического объектива и системы зеркал и попадает на светочувствительные элементы (CCD), которые преобразуют падающий на них свет в электрический сигнал. Этот сигнал затем усиливается и поступает на вход АЦП. Матрица CCD не прекращает работать все то время, пока лафет со сканирующей кареткой, приводимый шаговым электродвигателем, совершает путь от начала планшета до его конца. За один шаг перемещения каретки матрица целиком захватывает горизонтальную линию планшета, которая называется линией растра. По истечении времени, достаточного для обработки одной такой линии, каретка перемещается на небольшой шаг, и наступает очередь для сканирования следующей линии изображения. При этом число шагов каретки на дюйм ее перемещения по вертикали называется механическим разрешение сканера. Сканеры, в которых используется матрица CCD, имеют большую глубину резкости, высокую разрешающую способность (порядка 3200 dpi) и, как следствие, высокое качество сканирования.

АЦП – это устройство, которое преобразует аналоговый сигнал в цифровую форму, причем значение аналогового сигнала на входе АЦП соответствует этому значению на его выходе, но выраженному в двоичной системе счисления с соответствующим числом разрядов. Разрядность (число бит) АЦП характеризует точность преобразования аналогового сигнала и в основном определяет такую важную характеристику сканера, как глубина цвета. Разрядность современных АЦП, используемых в недорогих планшетных сканерах, варьируется в пределах от 24 до 48 бит.

Блок управления сканера предназначен для автономного управления работой сканера начинающими пользователями. Опытные пользователи управляют сканером с помощью ПК, а необходимые настройки перед сканированием задаются в пользовательском окне управляющей программы.

МП предназначен для согласованного управления всеми компонентами сканера и формирования данных об изображении для передачи персональному компьютеру. В некоторых моделях сканеров на МП возлагаются также функции контроллера интерфейса. Список программных инструкций для МП хранится в микросхеме постоянной памяти. Данные в эту микросхему записываются производителем сканера на этапе производства.

Протяжный механизм предназначен для перемещения сканирующей каретки и представляет собой зубчатый протяжной ремень, который крепится к каретке. Протяжной ремень приводится в движение электрическим шаговым двигателем. Шаговый двигатель через протяжной ремень перемещает каретку на строго определенное расстояние.

В качестве дополнительных устройств для сканера могут использоваться адаптеры для сканирования прозрачных пленок, слайдов, негативов (слайд-адаптеры) и автоподатчики документов.

Подключается планшетный сканер к системному блоку ПК посредством электрического кабеля и соответствующего порта. В качестве таких портов в настоящее время широко используются порты: USB (интерфейс Universal Serial Bus) и FireWire (IEEE1394, последовательный высокоскоростной интерфейс ввода-вывода).

К основным характеристикам сканеров относятся разрешение (оптическое и механическое), глубина цвета, тип матрицы и т. д.

Разрешение – важнейшая характеристика сканера. Оно измеряется в пикселях (точках) на дюйм – dpi (dotper inch – точек на дюйм) и показывает, сколько точек и линий (число шагов каретки) может различить сканер на отрезке длиной в один дюйм (25,4 мм). Разрешение записывается в виде произведения двух чисел, например 1200 х 2400 dpi. Первое число соответствует оптическому разрешению, второе – механическому.

Другая основная характеристика сканера – глубина цвета, измеряемая в битах. Чем больше эта величина, тем достовернее сканер может передать цвет каждой точки сканируемого изображения. У большинства планшетных сканеров глубина цвета, как правило, находится в пределах от 24 до 48 бит.

Рассмотрим в качестве примера запись в прайс-листе компании, торгующей сканерами:


BenQ 5250C (А4 Color, plain, 1200*2400dpi, USB2.0).

Представим данную запись в развернутом виде:

BenQ – компания-производитель;

5250C – модель сканера;

А4 Color – формат сканируемых листов А4 (210 х 297 мм), сканер цветной;

plain – сканер относится к сканерам планшетного типа;

1200*2400 dpi – разрешение сканера (оптическое разрешение равно 1200 dpi, механическое – 2400 dpi);

USB 2.0 – сканер подключается к порту USB 2.0 системного блока компьютера с помощью кабеля, входящего в комплект поставки.

Кроме того, данный сканер имеет глубину цвета 48 бит, светочувствительную матрицу CIS, пять кнопок быстрого доступа (для автономного управления) и габаритные размеры 412 х 258 х 38 мм.


После подключения сканера к системному блоку необходимо установить на компьютер программное обеспечение (ПО), которое входит в комплект поставки сканера. ПО для сканера можно условно разделить на две группы – системное и прикладное.

К системному ПО относят драйвер (от англ. driver – управляющая программа). С помощью этой программы обеспечивается связь между операционной системой ПК и сканером, осуществляется его управление и обмен данными.

К прикладному ПО относятся программы для обработки (корректировки, ретуширования и пр.) графических изображений и программы для машинописных и рукописных текстов, которые называются также программами распознавания текста или символов, – СО? – приложение (от англ. Optical Character Recognition – оптическое распознавание символов).

К программам для обработки графических изображений можно отнести: Adobe Photoshop, Adobe Photoshop Elements, Micrografx Picture Publisher и т. д. Например, для сканера BenQ 5250C в качестве прикладных программ для обработки изображений прилагаются программы Adobe AcrobatReader, Arcsoft PhotoBase, Arcsoft Photolmpression, Arcsoft PhotoPrinter, Photo Family software и пр.

Как уже отмечалось, с помощью сканера можно вводить в ПК и текстовые документы. Однако при этом тестовый документ преобразуется в файл графического формата, т. е. представляется в виде изображения, который затем необходимо преобразовать в текстовый формат с помощью специальных компьютерных программ – программ распознавания текстов (OCR). Для распознавания текста (символов), напечатанного на русском языке, в настоящее время широко используются компьютерные программы Finereader компании Abbyy Software House и CuneiForm компании Cognitive Technologies.

В настоящее время крупнейшими мировыми производителями сканеров являются компании Canon, Mustek, Epson, BenQ и т. д.

Для получения графической информации в виде фотоснимков и видеоизображений, непосредственно представленной в цифровой (компьютерной) форме, и последующего ввода данной информации в ПК используются цифровые фотоаппараты и цифровые видеокамеры.

Современные цифровые фотоаппараты предназначены в основном для получения неподвижных изображений, т. е. оцифрованных фотографических снимков, сохраненных в запоминающем устройстве фотоаппарата в виде графических файлов, которые после ввода в ПК могут быть подвергнуты соответствующей компьютерной обработке, сохранены в памяти компьютера или отпечатаны на фотобумаге при помощи принтера.

Конструктивно современные цифровые фотоаппараты состоят из следующих основных компонентов: корпуса, оптической системы (объектива) с электронно-механическим затвором, светочувствительной матрицы, электронного блока, кнопок управления, механических элементов, жидкокристаллического цветного дисплея, разъемов (слотов) для подключения внешних карт памяти и порта для подключения кабеля USB. Принцип работы цифрового фотоаппарата основан на проецировании изображения от фотографируемого объекта на светочувствительную матрицу с последующим его преобразованием в цифровую форму. После открытия затвора фотоаппарата отраженные от объекта световые лучи проходят через оптическую систему и попадают на светочувствительные элементы матрицы, на которых фокусируется изображение. Фокусировка, глубина диафрагмы (глубина резкости изображения) и выдержка (экспозиция – время открытия затвора, т. е. время проецирования изображения на светочувствительную матрицу) устанавливаются в цифровых фотоаппаратах автоматически или с помощью соответствующих пунктов меню настройки. Светочувствительные элементы матрицы, на которых фокусируется изображение от объекта, накапливают заряд, пропорциональный уровню освещенности. После закрытия затвора электронный блок считывает сигнал с каждого элемента, усиливает его, преобразует в цифровую форму и сохраняет его в виде графического файла в запоминающем устройстве электронного блока. Для получения цветного изображения объекта каждый светочувствительный элемент матрицы должен состоять из трех (по одному на каждый из основных) цветов – R, G, В. Однако применение таких матриц приводит к значительному удорожанию цифрового фотоаппарата в целом, поэтому для производства относительно недорогих цифровых фотоаппаратов используется матрица, в которой светочувствительные элементы организованы в так называемый цветовой массив Байера. В этом массиве половина светочувствительных элементов, расположенных в шахматном порядке, отвечает за зеленый цвет, к которому человеческий глаз наиболее чувствителен, а остальные светочувствительные элементы (по 25 %) считывают соответственно красный и синий цвета. Значения двух других цветов в каждой точке изображения интерполируются (определяются) в электронном блоке на основе существующих математических методов интерполяции.

Важнейшими компонентами цифрового фотоаппарата, определяющими качество его фотоснимков, являются оптическая система и светочувствительная матрица. В качестве светочувствительной матрицы в настоящее время используется CCD-матрица (Charge Coupled Device – прибор с зарядовой связью). Принцип действия ее в следующем: матрица состоит из массива прямоугольных светочувствительных элементов – конденсаторов, накапливающих электрический заряд под воздействием падающего на них света. После того как затвор фотоаппарата закрывается, с матрицы происходит считывание зарядов (последовательно, строка за строкой) и запись их значений в специальную считывающую строку, из которой последние, усиленные и преобразованные в цифровую форму, переносятся в память фотоаппарата. В процессе считывания зарядов CCD-матрица «очищается», и к моменту окончания цикла считывания она готова к записи следующего снимка. Именно возможность построчного считывания со светочувствительных элементов накопленных во время съемки зарядов и отсутствие необходимости в дополнительной «очистке» матрицы и сделали в итоге технологию CCD ведущей при производстве цифровых фотоаппаратов.

Основными характеристиками матрицы являются ее разрешение и размер. Разрешение матрицы измеряется в мегапикселях (Мрх – Mega pixels). Впервые этот термин был введен компанией Kodak в 1986 г., когда она создала промышленный образец CCD – матрицы с разрешением 1,4 Мрх.

Разрешение матрицы определяет количество ее светочувствительных элементов. Например, если указывается разрешающая способность матрицы равной 5 Мрх, то это означает, что матрица имеет количество рабочих светочувствительных элементов, равное 5 000 000 (пять миллионов), что соответствует разрешению изображения, равному 2560 х 1920, которое может быть получено на экране монитора компьютера при отношении сторон снимка снимка, равном 4: 3. Разрешение матрицы – важная характеристика, влияющая на качество получаемых снимков. Например, если вы хотите получить качественный снимок 10 х 15 см и отпечатать его на принтере, т. е. обеспечить разрешающую способность при печати на принтере не менее 300 dpi (такое разрешение при печати в фотолабораториях считается приемлемым для получения качественного снимка), или 120 точек на 1 см, то разрешение самой матрицы цифрового фотоаппарата должно быть не менее 2,16 Мрх (120 х 15 х 120 х 10 = 2160000 точек). Матрица с более высоким разрешением улучшит качество снимка за счет прорисовки более мелких деталей изображения, но определяющую роль здесь будет играть все же качество оптической системы цифрового фотоаппарата. Дальнейшее увеличение разрешения приводит к возрастанию цифровых шумов на выходе АЦП электронного блока, что особенно сильно проявляется в условиях слабой освещенности фотографируемого объекта, и как следствие – к ухудшению качества снимка. Один из способов уменьшения влияния шумов на качество снимка – увеличение размера матрицы. По этой причине размер светочувствительной матрицы также является важной характеристикой, влияющей на качество снимка.

Размер матрицы – это условная характеристика, она записывается в виде числа, которому соответствуют определенные геометрические размеры (размер по горизонтали и вертикали) матрицы, например 1/2,5", 1/2", 1/1,8" и т. д. В табл. 5.3 приведены соответствия между условным размером и реальным размером некоторых выпускаемых светочувствительных матриц.

Таблица 5.3

Между разрешением и размером матрицы существует зависимость: при постоянном размере матрицы шумы будут возрастать с увеличением ее разрешения, и наоборот, т. е. при постоянном разрешении матрицы шумы будут уменьшаться при увеличении ее размера. Однако увеличение размера матрицы приводит к повышению требований к оптической системе и, как следствие, – к удорожанию цифрового фотоаппарата в целом. Поэтому производители ищут компромисс между разрешением и размером матрицы.

Графическая информация о фотографируемом объекте после соответствующей обработки в электронном блоке (аналогово-цифрового преобразования, интерполяции, сжатия в стандарте JPEG и т. д.) сохраняется в запоминающем устройстве (памяти) цифрового фотоаппарата в виде графического файла. Формат графического файла изначально предполагает его сжатие с целью уменьшения информационного объема. Для сжатия исходного графического файла в цифровых фотоаппаратах используется алгоритм сжатия JPEG (Joint Photographic Experts Group – объединенная группа экспертов по фотографии), после которого файл имеет расширение *.jpg и уже в таком формате переносится в компьютер и может быть сохранен в его памяти. Информационный объем графического файла (одного кадра) зависит от разрешения матрицы цифрового фотоаппарата и алгоритма сжатия и в настоящее время в среднем равен 1 Мбайт.

Память в цифровом фотоаппарате подразделяется на внутреннюю (встроенную) и внешнюю. Встроенной памяти, как правило, недостаточно (ее объем зависит от модели фотоаппарата и в среднем для любительских фотоаппаратов варьируется в пределах от 16 до 32 Мбайт), по этой причине используют внешнюю память (карту памяти), объем которой может значительно превышать объем встроенной памяти (на порядок и выше). В настоящее время в основном используют две карты памяти – SD (Secure Digital) и ММС (MultiMediaCard). Данные карты приобретаются отдельно и устанавливаются в разъем (слот), расположенный в корпусе фотоаппарата.

Просмотр установленных параметров съемки в меню, наведение фотоаппарата на объект и просмотр отснятого кадра осуществляется с помощью жидкокристаллического цветного дисплея.

Для переноса полученного графического файла на компьютер с целью его предварительного просмотра, корректировки с помощью соответствующих компьютерных программ (например, Video Studio, Photo Explorer, Photo Express и т. д.) и последующей печати на принтере используется кабель, который подключается к порту USB системного блока ПК.

Так же, как и в предыдущих случаях, рассмотрим в качестве примера запись в прайс-листе компании, торгующей цифровыми фотоаппаратами:


Kodak EasyShare LS753 (5.0Мрх, 36-100mm, 2.8х, F3.0–4.9, JPG, 32Mb + 0Mb SD/MMC, 1.8", USB, Li-Ion).

Представим данную запись в развернутом виде:

Kodak – компания-производитель;

Easy Share LS753 – модель фотоаппарата;

5.0 Мрх – разрешение матрицы;

36-100 mm – фокусное расстояние объектива;

2.8х – диапазон изменения фокусного расстояния (оптический zoom, или оптический 2.8х-трансфокатор);

F3.0–4.9 – светосила объектива;

JPG – формат сжатия;

32Mb + 0Mb SD/MMC – встроенная память 32 Мбайт, слоты для карт памяти SD/MMC;

1.8" – размер жидкокристаллического дисплея (46 мм);

USB – порт подключения (интерфейс);

Li-Ion – источник электрического питания (аккумулятор).


В настоящее время крупнейшими мировыми производителями цифровых фотоаппаратов являются компании Canon, Kodak, Nikon, Panasonic и т. д.

Для получения подвижных графических изображений (видеоизображений) в цифровом виде и последующего их ввода в компьютер используются цифровые фотоаппараты, способные работать в режиме видеосъемки, и цифровые видеокамеры.

Многие современные любительские цифровые фотоаппараты имеют режим видеосъемки, который позволяет снимать видеосюжеты со скоростью несколько десятков кадров в секунду (например, 30 кадров в секунду). Полученный при этом видеофайл и сохраненный в памяти цифрового фотоаппарата в соответствующем формате (например, AVI, MOV, MPEG и т. д., что зависит от конкретной модели цифрового фотоаппарата) может быть воспроизведен на экране дисплея или перенесен на компьютер. При открытии (запуске) графического файла на экране дисплея фотоаппарата или компьютера проходит последовательность кадров (неподвижных графических изображений) с определенной скоростью, которая из-за инерционности человеческого глаза воспринимается как видеоизображение. Для получения более качественного видеоизображения в цифровой форме используются цифровые видеокамеры, в которых используются более качественная оптическая система и светочувствительная матрица, а также запоминающее устройство, имеющее больший объем памяти. Цифровые видеокамеры, также как и цифровые фотоаппараты, делятся на любительские и профессиональные, которые различаются по техническим и эксплуатационным характеристикам. У профессиональных цифровых фотоаппаратов и видеокамер они значительно выше. Любительские цифровые видеокамеры в основном имеют два формата: MiniDV, при котором запись производится на миниатюрную магнитную кассету, и DVD, при котором запись производится на оптический диск.

В настоящее время ведущими мировыми производителями цифровых видеокамер являются компании Sony, Panasonic, Philips, Canon и NC.

Для ввода звуковой информации в ПК используется микрофон, который подключается с помощью электрического кабеля к звуковой карте (звуковому контроллеру). Звуковая карта устанавливается в один из слотов (разъемов) на системной плате ПК. Микрофон преобразует звуковой сигнал в электрический, который затем поступает в звуковую карту. Звуковая карта принимает электрический сигнал от микрофона, преобразует его из аналоговой формы в цифровую и сохраняет звуковую информацию в виде файла, формат которого определяется компьютерной программой обработки звуковой информации (например, WMA – Windows Media Audio). Качество оцифрованной звуковой информации определяется параметрами АЦП звуковой карты: ее разрядностью (16–24 бит) и частотой дискретизации (44,1; 48; 96 или 192 кГц). Кроме того, современные звуковые карты имеют частотный диапазон воспроизводимого звука от 20 Гц до 20 КГц. Для ввода звуковой информации в ПК используются в основном электростатические (конденсаторные) микрофоны.

5.2.2.3. Устройства вывода информации с персонального компьютера

К устройствам вывода информации относятся монитор, принтер, графопостроитель (плоттер), звуковые колонки, наушники.

Монитор, или дисплей, относится к основным устройствам вывода информации в ПК и предназначен для визуального отображения графической и текстовой информации на своем экране. В отличие от принтера и плоттера монитор может отображать на своем экране как статическую, так и динамическую (изменяющуюся) информацию без ее долговременной фиксации. Монитор совместно с видеоконтроллером (видеоадаптером) обычно входит в состав видеосистемы или видеотерминала ПК.

По принципу действия мониторы в настоящее время различаются на следующие типы:

На основе электронно-лучевой трубки (ЭЛТ или CRT – Cathode Ray Tube);

На основе жидкокристаллических индикаторов (ЖКИ или LCD – Liquid Crystal Display);

Плазменные (PDP – Plasma Display Panels);

Светоизлучающие на основе органических материалов (LEP – Light Emission Plastics);

На основе автоэлектронной эмиссии (FED – Field Emission Display);

На основе низкотемпературного поликристаллического кремния (LTPS – Low Temperature Poly Silicon).

На сегодняшний день в ПК находят наибольшее применение два первых типа мониторов, основное отличие которых состоит в способе формирования изображения на экране. В мониторах первого типа основным элементом является электронно-лучевая трубка. Формируется изображение у такого монитора на внутренней поверхности экрана ЭЛТ, покрытого слоем люминофора – специального вещества, светящегося под воздействием электронного луча, который создается с помощью электронной пушки и управляется системами горизонтального и вертикального отклонения луча. Люминофор наносится на внутреннюю сторону ЭЛТ в виде точек – пикселей. В цветных мониторах каждый пиксель состоит из трех точек люминофора, которые под воздействием своего электронного луча (используется три электронных пушки) излучают соответственно красный, зеленый и синий цвета. Изменяя яркость свечения каждого из этих трех основных цветов при их смешивании, можно получить соответствующую палитру цветов. Перед экраном на пути электронов устанавливается тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Эта пластина обеспечивает попадание электронных лучей от трех пушек только в точки люминофора соответствующего цвета. Электронный луч под воздействием отклоняющей системы монитора перемещается по экрану слева направо и сверху вниз и появляется растр в виде светящихся разноцветных точек, который и создает у пользователя иллюзию изображения. Информационный и управляющий сигналы поступают на вход монитора с видеоадаптера.

Конструктивно монитор типа CRT состоит из корпуса, в котором располагаются ЭЛТ, системы вертикального и горизонтального управления лучом, электронный блок с кнопками управления, высоковольтный источник напряжения ЭЛТ, блок питания, разъемы для подключения к системному блоку ПК и сети переменного тока и т. д. Кроме того, в комплект поставки входят шнур электропитания, электрический (информационный) кабель, подставка под монитор.

К основным характеристикам монитора типа CRT относятся:

Разрешающая способность, которая определяется числом пикселей по горизонтали и вертикали, которая может принимать значения 800 х 600, 1024 х 768, 1152 х 864, 1280 х 720 и т. д.;

Глубина цвета, измеряется в битах, например 16 или 32 бит;

Размер пикселя, например 0,22, 0,24, 0,28 мм и т. д. Чем меньше размер пикселя, тем лучше качество монитора;

Размер экрана, который задается величиной его диагонали в дюймах, например 15", 17", 21" и т. д.;

Частота вертикальной (кадровой) развертки, которая определяет скорость смены кадров изображения и может варьироваться от 50 до 240 Гц. Чем выше частота кадров, тем меньше утомляемость глаз. Частота смены кадров зависит от разрешающей способности монитора – чем выше способность, тем меньше должна быть частота;

Частота горизонтальной развертки, варьируется в пределах 30–71 кГц.

Кроме того, на разрешающую способность и качество изображения монитора влияет объем видеопамяти видеоадаптера.

Подключается монитор к системному блоку компьютера (видеоадаптеру) посредством электрического кабеля и 15-контактного коннектора (разъема) D-Sub.

К мониторам типа CRT предъявляются достаточно жесткие требования к уровню магнитных и электрических излучений, которые неблагоприятно влияют на здоровье человека. В связи с этим каждый монитор должен иметь сертификат безопасности, представляющий набор требований к уровням магнитных и электрических излучений в разных диапазонах частот, к функции энергосбережения. Данный сертификат определяет экологическую безопасность и эргономические параметры. По мере совершенствования мониторов изменялись и требования к безопасности, которые отражались в сертификатах MPR II, ТСО-92, ТСО-95, ТСО-99 и т. д. В настоящее время действует в основном самый безопасный сертификат ТСО"03.

Рассмотрим в качестве примера запись в прайс-листе компании, торгующей мониторами типа CRT:


19" MONITOR 0.24 LG Natron F920B.

Представим данную запись в развернутом виде:

0.24 – размер пикселя;

LG – компания-производитель;

Flatron F920B – модель монитора.


Наибольшей популярностью в настоящее время пользуются мониторы типа LCD. Эта популярность, а также достоинства этого типа мониторов привели к тому, что многие производители прекращают выпуск CRT-мониторов. Принцип действия мониторов LCD основан на использовании в них веществ, находящихся при нормальных или близких к ним условиях в жидком состоянии, но обладающих некоторыми свойствами, например оптическими, характерными для кристаллических тел. Эти вещества называют жидкокристаллическими. Одним из представителей таких веществ является цианофенил.

Вещества, обладающие указанными свойствами, состоят из молекул, которые пропускают падающий на них свет в зависимости от своей ориентации в пространстве. Если оптические плоскости молекул жидкокристаллического вещества параллельны вектору электромагнитной индукции падающей на них составляющей света (части спектра светового излучения), то они ориентированы (поляризованы) в пространстве и пропускают эту составляющую света. В противном случае они не ориентированы (не поляризованы) и не пропускают ее. Ориентацией молекул в таких веществах можно управлять, воздействуя на них электрическим полем. Это свойство жидких кристаллов используется для формирования изображения на экране LCD-монитора.

Существует достаточно много конструкций LCD-мониторов и технологий их изготовления, которые очень сложны и рассмотрение их выходит за рамки данного учебного пособия. Основой LCD-монитора является жидкокристаллическая матрица, в которой изображение формируется с помощью горизонтальных и вертикальных прозрачных токопроводящих электродов, расположенных на поверхностях стеклянных пластин (подложек). Эти пластины расположены на очень близком расстоянии друг от друга. Между подложками помещается жидкокристаллическое вещество, молекулы которого изменяют свою поляризацию под воздействием подаваемого на электроды электрического напряжения. Если на вертикальные и горизонтальные электроды подавать последовательно с определенной периодичностью электрические импульсы, то поляризации будут подвергнуты только молекулы, находящиеся на пересечении этих электродов, и соответственно свет от встроенного в монитор источника будет проходить без ослабления только в местах этих пересечений. Этот свет и будет формировать у пользователя образ графического изображения, состоящего из светящихся точек (пикселей) на экране монитора. Процесс подачи электрических импульсов на электроды периодически повторяется с частотой строчной и кадровой разверток монитора, и у пользователя из-за инерционности зрительного восприятия глаз будет формироваться неподвижное или подвижное графическое изображение на экране. В зависимости от конструкции в мониторах могут использоваться различные источники света: лампы подсветки или полупроводниковые приборы (транзисторы, диоды и т. д.). Жидкокристаллическая матрица в цветных мониторах содержит дополнительно красный, зеленый и синий светофильтры, которые выделяют из излучения источника белого света три основных компонента. Комбинируя основные цвета для каждой точки или пикселя экрана, можно воспроизвести заданную палитру цветов. В настоящее время для ПК в основном выпускаются LCD-мониторы, в которых матрица выполнена по технологии TFT(Thin Film Transistor – тонкопленочный транзистор). Данные матрицы называются также активными. В них с помощью специальной технологии на пересечении горизонтальных и вертикальных электродов устанавливаются активные управляющие элементы – тонкопленочные транзисторы. Количество транзисторов определяется максимально возможной разрешающей способностью монитора. В цветных мониторах каждый пиксель состоит из триады, поэтому если максимальная разрешающая способность LCD-монитора составляет, например, 1280 х 1024, то количество транзисторов будет равно 3 х 1280 х 1024 = 3 932160. Транзисторы выполняют в таких матрицах функции управления и подсветки для ячеек жидкокристаллического вещества. В отличие от пассивных матриц (в них отсутствуют тонкопленочные управляющие транзисторы) у активных матриц некоторые характеристики выше, что влияет на качество получаемого изображения и удобство работы с монитором, в котором установлена активная матрица. У активных матриц отсутствует влияние соседних пикселей друг на друга, меньше инерционность (последействие или латентность) пикселей, значительно больше угол обзора по горизонтали и вертикали. Угол обзора влияет на удобство работы с монитором. У мониторов с пассивной матрицей приемлемое качество изображения получается только при фронтальном расположении пользователя перед экраном монитора.

Конструктивно монитор типа LCD состоит из корпуса, в котором располагаются жидкокристаллическая матрица, электронный блок с кнопками управления, разъемы для подключения к системному блоку ПК. Источник питания, как правило, является выносным. Кроме того, в комплект поставки входят электрический (информационный) кабель и подставка под монитор.

Основные характеристики LCD-мониторов частично совпадают с характеристиками CRT-мониторов (разрешающая способность, глубина цвета, размер диагонали и т. д.), но имеется ряд важныхарактеристик, которые обязательно указываются в техническом паспорте на LCD-монитор. К таким характеристикам можно отнести:

Яркость – измеряется в канделах на метр квадратный и обычно находится в пределах от 200 до 400 кд/м 2 . Чем больше яркость, тем качественнее монитор;

Контрастность – одна из самых важныхарактеристик LCD-мониторов. Определяется как отношение яркости самого светлого участка экрана монитора к самому темному, среднее значение контрастности находится в пределах 600: 1V700: 1. Чем больше это соотношение, тем качественнее изображение на мониторе;

Инерционность, или латентность, пикселя – определяется как время отклика, или реакции, пикселя на видеосигнал. Значение этой характеристики у хороших мониторов находится в пределах 4-12 мс, при высокой латентности матрицы резкие движения курсором мыши оставляют шлейф на экране монитора;

Угол обзора – показывает, на какой угол может отклониться взгляд человека без потери им видимости изображения на экране монитора. Указывается такой угол как по вертикали, так и по горизонтали, у современных мониторов находится в пределах 170°;

Частота вертикальной (кадровой) развертки – определяет скорость смены кадров изображения и варьируется от 56 до 76 Гц.

Подключаются LCD-мониторы к системному блоку компьютера (видеоадаптеру) посредством электрического (информационного) кабеля и 15-контактного коннектора (разъема) D-Sub (аналоговый вход управления монитором) или с помощью коннектора DVI – Digital Video Interface (цифровой вход управления монитором).

Рассмотрим в качестве примера запись в прайс-листе компании, торгующей мониторам типа LCD:


19" MONITOR LG L1950B-SF Flatron (LCD, 1280x1024, +DVI).

Представим данную запись в развернутом виде:

19" – размер диагонали монитора (48,3 см);

LG – компания-производитель;

L1950В-SF Flatron модель монитора;

LCD – тип монитора;

1280 х 1024 – максимальная разрешающая способность монитора;

DVI – цифровой вход управления монитором.


Отметим преимущества и недостатки LCD-мониторов по сравнению с мониторами типа CRT. К преимуществам можно отнести:

Значительно меньшее потребление электроэнергии (до 40 Вт, CRT-70-100 Вт);

Хорошая фокусировка, отсутствие геометрических искажений и ошибок совмещения цветов;

Отсутствие мерцания экрана (отсутствует обратный ход луча);

Качество изображения одинаково для любой области экрана (у CRT качество изображения лучше в центре экрана);

Меньшие габаритные размеры и масса;

Отсутствие вредных для здоровья человека излучений. К недостаткам можно отнести:

Изменение разрешающей способности монитора приводит к необходимости заново отстраивать монитор;

Яркость монитора недостаточна для работы при ярком освещении и солнечном свете;

Отсутствие качественной цветовой калибровки;

Латентность матрицы.

В настоящее время ведущими мировыми производителями мониторов являются компании Sony, Panasonic, Philips, LG, Hitachi, Acer и др.

Управление работой монитора осуществляется посредством видеоадаптера. Видеоадаптер формирует служебные сигналы (синхросигналы строчной и кадровой разверток, сигнал управления яркостью и т. д.), а также хранит передаваемые МП данные о каждом пикселе монитора. Современные видеоадаптеры могут быть интегрированы в системную плату ПК или конструктивно выполняются в виде отдельной платы, устанавливаемой в слот (разъем) системной платы. Видеоадаптеры обеспечивают работу монитора в режиме SVGA (Super Video Graphics Array) с разрешающей способностью выше 800 х 600 точек.

Основная характеристика видеоадаптера – объем памяти, где хранятся передаваемые с МП данные о каждом пикселе монитора. В среднем объем видеопамяти составляет 128 Мбайт. Для ускорения процесса обработки видеоданных видеоадаптеры имеют собственный видеопроцессор, поэтому их называют также видеоконтроллерами. Видеоконтроллер может подключаться к чипсету с помощью локальной шины AGP (Accelerated Graphics Port), имеющей 32 разряда и частоту переключения, равную 66 МГц.

В настоящее время ведущими мировыми производителями видеоадаптеров являются компании Asustek, Matrox, Ati и др.

Кроме мониторов, основными устройствами вывода информации в ПК являются принтеры, которые в отличие от мониторов регистрируют информацию в основном на материальном носителе – бумаге, в удобном для чтения виде. Таким образом, если мониторы предназначены для индикации информации на своем экране, то принтеры – для ее регистрации на бумажном носителе.

Принтеры классифицируются по ряду признаков, выделим лишь основные – количество воспроизводимых цветов и способ печати.

По количеству воспроизводимых цветов принтеры подразделяются на монохромные (черно-белые) и цветные. Первые позволяют получать черно-белые символы, рисунки и т. д., вторые – цветные.

По способу печати принтеры можно подразделить на термографические, матричные, струйные, лазерные и специальные.

В термографических, матричных, струйных, лазерных и некоторых специальных принтерах изображение формируется на бумаге из отдельных точек, т. е. каждый печатаемый символ, рисунок или графическое изображение, полученное с помощью сканера, цифрового фотоаппарата и т. д., отображается на бумаге как определенная совокупность отдельных точек. Принцип формирования точек изображения и их количество на единицу поверхности (разрешение по горизонтали и вертикали) у перечисленных выше принтеров различаются.

В термографических принтерах для передачи на бумагу точек изображения использует нагрев. В принтерах с прямым нагревом используется бумага со специальным химическим покрытием (термобумага). В месте контакта нагретого термоэлемента и бумаги происходит химическая реакция, которая приводит к изменению цвета точки в данном месте. В термографических принтерах, основанных на теплопередаче, используется специальная красящая лента, краситель которой под действием нагрева от термоэлемента, расплавляясь, переносится на бумагу.

В матричных принтерах печатающая головка принтера содержит ряд тонких металлических стержней (иголок). Головка движется вдоль печатаемой строки, а стержни в нужный момент ударяют по бумаге через красящую ленту, оставляя на ней следы в виде точек. Из этих точек и формируется изображение на бумаге. Красящая лента вместе с лентопротяжным механизмом помещается в специальное съемное устройство – картридж (от англ. cartridge – кассета).

В струйных принтерах печатающая головка вместо металлических стержней содержит тонкие трубки – сопла (форсунки), через которые под большим давлением выбрызгиваются микроскопические капли специальных чернил на бумагу. Чернила помещаются в специальную емкость (чернильницу) и разбрызгиваются по контуру символа или рисунка. Размеры полученных точек на бумаге при этом в десятки раз меньше размеров точек, получаемых от матричного принтера. В настоящее время многие струйные принтеры поддерживают цветную печать. В цветных принтерах цвет каждой точки цветного изображения формируется за счет смешения базовых цветов (красного, зеленого и синего) в заданной пропорции.

В лазерных принтерах изображение также формируется из точек с помощью луча лазера, который создается лазерным генератором. В современных конструкциях принтеров в качестве лазерного генератора используются лазерные диоды, работающие в импульсном режиме. Изображение формируется на носителе за счет реализации нескольких операций. Первая операция включает в себя перенос изображения с помощью прерывистого луча лазера на специальный барабан (валик, покрытый тонким светочувствительным материалом, способным изменять электрический заряд точки под воздействием попавшего на него луча лазера. Далее барабан посыпается мелкодисперсионным порошком – тонером, который прилипает к барабану в точках, подвергшихся электролизации, и тем самым вычерчивает контур изображения. Тонер, не прилипший к барабану, удаляется и помещается в специальный бункер. Затем барабан с налипшим на него тонером прокатывается по бумаге и частицы красящего порошка переходят на бумагу. На завершающей операции происходит термическая обработка бумаги (нагрев до 200 °C), после чего порошок расплавляется и, проникая в структуру бумаги, остается в ней. Лазерные принтеры могут печатать и цветные изображения, для этого в них используются тонеры разного цвета.

Специальные принтеры входят в состав различных технических устройств и предназначены для печати не только на бумаге, но и на других материальных носителях – пленке, металле, картоне и т. д.

Конструктивно принтеры состоят из корпуса, в котором располагаются механические узлы (протяжный механизм для бумаги, входной и выходной лотки для приема и выхода бумаги и т. д.), электронного блока с кнопками управления, картриджа, блока питания, разъемов для подключения к системному блоку ПК.

К основным характеристикам принтеров относятся качество печати и производительность. Качество печати оценивается по разрешающей способности принтера и измеряется в пикселях (точках) на дюйм – dpi (dot per inch). При этом оценивается разрешающая способность как по горизонтали, так и по вертикали. Из перечисленных выше принтеров наиболее широко применяются струйные и лазерные, которые имеют достаточно высокое качество печати (разрешение 1200 х 1200 dpi и выше).

Производительность принтеров оценивается в основном скоростью печати, измеряемой максимальным количеством листов бумаги, которое принтер может отпечатать за минуту. Современные струйные и лазерные принтеры имеют максимальную скорость печати, равную нескольким десяткам страниц в минуту.

Подключаются принтеры к системному блоку компьютера посредством электрического (информационного) кабеля и соответствующего порта. В настоящее время широко используются параллельные (LPT) и последовательные (USB) порты.

Рассмотрим в качестве примера запись в прайс-листе компании, торгующей принтерами:


Samsung ML-2550 (А4, лазерный, 24 стр/мин, 1200dpi, USB2.0/ LPT).

Представим данную запись в развернутом виде:

Samsung – компания-производитель;

ML-2550 – модель принтера;

А4 – формат используемой бумаги (210 х 297 мм);

Лазерный – тип принтера;

24 стр./мин. – максимальная скорость монохромной печати;

1200 dpi – разрешающая способность (1200 х 1200 dpi);

USB2.0/LPT – порты компьютера, к которым может подключаться принтер.


В настоящее время ведущими мировыми производителями принтеров являются компании Epson, Canon, Hewlett Packard, Samsung, Lexmark и др.

Принтеры предназначены в основном для печати изображений на бумаге форматом А4 и A3, для печати изображений более крупных форматов используются графопостроители, или плоттеры (от англ. plot – чертить). Используются плоттеры в основном для вывода графической информации – чертежей, схем, диаграмм и т. п. По способу печати они делятся на две большие группы – векторные и растровые.

В векторных плоттерах пишущий узел перемещается в двух направлениях: в горизонтальном и вертикальном, вычерчивая на бумаге непрерывные линии. По конструкции пишущего узла они сходны с пишущим узлом струйного принтера.

В растровых плоттерах пишущий узел перемещается только в горизонтальном направлении и изображение формируется строка за строкой при перемещении бумаги в вертикальном направлении относительно пишущего узла. В таких плоттерах могут использоваться струйные или лазерные пишущие узлы.

К устройствам вывода информации относятся также звуковые или акустические колонки и наушники, которые предназначены для вывода звуковой информации с ПК. Данные устройства входят в состав аудиосистемы ПК, которая обеспечивает запись, обработку и воспроизведение звука с помощью ПК. Аудиосистема состоит из звуковой карты (звукового адаптера или контроллера), акустической системы (акустические колонки и наушники) и микрофона. С помощью аудиосистемы можно выводить как звуковую информацию, записанную на оптических дисках, так и информацию, сохраненную в виде файлов форматов WMA (Windows Media Audio), МРС (MusePack), МР3 (MPEG – 1 Layer 3 – звуковой формат с высоким уровнем сжатия звуковой информации) и т. д. Акустические колонки и наушники преобразуют электрический сигнал, поступающий с выхода звуковой карты, в звуковой (акустический) сигнал, воспринимаемый человеческим ухом. В ПК в основном применяются активные акустические колонки, которые имеют встроенный усилитель низкой частоты и источник питания.

В настоящее время ведущими мировыми производителями акустических систем для компьютеров являются компании Genius, Philips, Defender, Microlab и др.

5.3. Определение состава и характеристик оборудования персонального компьютера

При решении ряда практических задач, связанных с использованием определенных программных средств, возникает необходимость в определении и уточнении состава и характеристик оборудования ПК, установленного на рабочем месте. Эта необходимость обычно продиктована требованиями, которые предъявляют программные средства к аппаратному обеспечению ПК. Как правило, при продаже программного продукта на упаковке, в которой находится носитель с программным продуктом, указываются требования к аппаратным средствам компьютера.

Существует достаточно много компьютерных программ, позволяющих определить состав и характеристики оборудования ПК. Воспользуемся компьютерной программой «Сведения о системе», которая входит в состав служебных программ операционной системы Windows ХР. Пуск – Программы – Стандартные – Служебные – Сведения о системе]. После запуска программы откроется основное окно программы, приведенное на рис. 5.5. В открывшемся окне можно определить тип и тактовую частоту микропроцессора, используемого в ПК, полный объем физической памяти (объем оперативной памяти) и т. д. Если в левой части окна открыть раздел «Компоненты», можно определить компоненты, входящие в состав ПК, например устройства мультимедиа, устройства ввода, порты и запоминающие устройства.


Рис. 5.5. Окно программы «Сведения о системе»


Кроме данной программы для определения состава и характеристик оборудования ПК можно воспользоваться программой «Панель управления», входящей в состав операционной системы Windows ХР. Для запуска данной программы необходимо выполнить команду: [Кнопка Пуск – Настройка – Панель управления – Система]. В открывшемся окне «Свойства системы» необходимо выбрать вкладку «Оборудование» и нажать кнопку «Диспетчер устройств». После выполнение этих действий откроется окно «Диспетчер устройств», представленное на рис. 5.6.


Рис. 5.6. Окно программы «Диспетчер устройств»


Раскрывая отдельные разделы «Диспетчера устройств», можно пополнить сведения о составе и характеристиках оборудования ПК.

Кроме программ, с помощью которых можно определить состав и характеристики ПК, существуют программы, позволяющие отображать процессы, связанные с хронологией загрузки центрального процессора и оперативной памяти. Для запуска такой программы в операционной системе Windows ХР необходимо выполнить несложную операцию: нажать одновременно три клавиши . После выполнения этой операции появится окно, представленное на рис. 5.7, в котором необходимо выбрать вкладку «Быстродействие».


Рис. 5.7. Окно программы «Диспетчер задач Windows»


На рис. 5.7 видно, что ЦП (центральный процессор или МП) практически не используется. Выбрав вкладку «Приложения» можно увидеть все компьютерные программы, запущенные к этому моменту времени. Вкладка «Процессы» позволяет увидеть набор активных программ, входящих в состав операционной системы Windows ХР, и долю ресурса ЦП, которую они используют. Имея возможность планирования заданий, предоставляемую операционной системой Windows ХР, можно запланировать включение в определенное время программ, потребляющих значительные ресурсы компьютера (например, Microsoft Word или Excel), и наблюдать, как изменяется уровень потребления ресурсов в момент запуска программ.

Упражнения для самостоятельного выполнения

1. Провести классификацию ПК, установленного на рабочем месте в компьютерном классе, в соответствии с классификационными признаками, приведенными в п. 5.1.

2. Определить состав и основные характеристики оборудования ПК, установленного на рабочем месте в компьютерном классе. Информацию о составе и характеристиках оборудования ПК представить с помощью следующей таблицы:


3. Нарисовать структурную схему ПК, установленного на рабочем месте в компьютерном классе, с помощью программы Microsoft Excel.

4. Определить, к какому виду устройств ПК относятся нижеследующие записи в прайс-листе организации, торгующей ПК, и представить данные записи в развернутом виде:

CPU Intel Celeron D 352 3.2 ГГц/ 512K/ 533МГц 775-LGA;

Genius G-Pen 560 (4.5" x 6", 2000 lpi, 1024 уровня, USB);

Canon CanoScan 5000F(A4 Color, plain, 2400 x 4800dpi, USB 2.0, слайд-адаптер);

BenQ Digital Camera E53 (5.0Mpx, 32-96mm, 3x, F2.8–4.8, JPG, (8-32) Mb SD, 2.5", USB, Li-Ion);

17" MONITOR 0.27 LG Matron EZ T710PU;

17" MONITOR LG L1770HQ-BF Flatron (LCD, 1280x1024, +DVI);

Epson STYLUS COLOR 680 (A4, 2880dpi, USB).

5. Запланировать запуск программы Microsoft Excel через 3 минуты от момента планирования и провести наблюдение, как будет изменяться потребление ресурсов в момент загрузки Microsoft Excel с помощью программы «Диспетчер задач Windows».

Для планирования включения программ Microsoft Excel необходимо открыть окно программы «Мастер планирования заданий». Для запуска данной программы необходимо выполнить команды: [Кнопка Пуск – Программы – Стандартные – Служебные – Назначенные задания/Добавить задание].

Введение

1. Основные сведения о построении ЭВМ

2. Аппаратные средства персонального компьютера

3. Характеристика основных устройств персонального компьютера.

Выводы

ЛИТЕРАТУРА

    Информатика : Учебник / Под ред. проф.Н.В.Макаровой . – М.: Финансы и статистика, 2001. - 768 с. (главы 4-7).

    Інформатика: Комп"ютерна техніка. Комп"ютерні технології : Підручник для студентів вищих навчальних закладів / За ред.O.I.Пушкаря . – К.: Видавничий центр "Академія", 2002. с. 12-81).

    Информатика : Базовый курс /С.В.Симонович и др. – СПб.: Питер, 2002. 62-85 с.

Введение

В информатике понятие «система» чаще всего используется относительно технических средств и программ. Системой называют также аппаратную часть компьютера.

В работе ПК, реализуемом его аппаратными средствами, можно выделить следующие этапы:

1. Зарождение данных - формирование первичных сообщений, которые фиксируют результаты определенных операций, свойства объектов и субъектов управления, параметры процессов, содержание нормативных и юридических актов и т.п.

2. Накопление и систематизация данных - организация их размещения, обеспечивающая быстрый поиск и отбор нужных сведений, методическое обновление данных, защиту их от искажений, потери, нарушения целостности и др.

3. Обработка данных - процессы, в результате которых на основе ранее накопленных данных формируются новые виды данных: обобщающие, аналитические, рекомендательные, прогнозные.

4. Отображение данных - представление их в форме, пригодной для восприятия человеком. Прежде всего - это вывод на печать, т.е. изготовление документов, удобных для восприятия человеком. Широко используют построение графических иллюстративных материалов (графиков, диаграмм) и формирование звуковых сигналов.

Целью практического занятия является изучение состава и характеристик аппаратных средств ПК, основных принципов организации его работы.

1. Основные сведения о построении эвм

Электронная вычислительная машина (ЭВМ) или компьютер - это устройство, выполняющее операции ввода данных, их сохранение и обработку по определенной программе, вывод полученных результатов в форме, пригодной для восприятия человеком.

За каждую из названных операций отвечают специальные блоки ЭВМ: устройства ввода, центральный процессор (ЦП), память, устройства вывода. Эти устройства соединены каналами связи, по которым передается информация.

Основные устройства компьютера и связи между ними представлены на схеме (рис. 1). Жирными стрелками показаны пути и направления движения информации, а простыми стрелками - пути и направления передачи управляющих сигналов.

В ЦП входит арифметико-логическое устройство (АЛУ), запоминающее устройство (ЗУ) в виде регистров и внутренней кэш-памяти, устройство управления (УУ). Функции процессора:

    обработка данных по заданной программе путем выполнения арифметических и логических операций;

    программное управление работой устройств компьютера.

Та часть процессора, которая выполняет команды, называется арифметико-логическим устройством (АЛУ), а другая его часть, выполняющая функции управления устройствами, называетсяустройством управления (УУ).

В составе процессора имеется ряд специализированных дополнительных ячеек памяти, называемых регистрами , которые выполняют функцию кратковременного хранения числа или команды. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, «вырезать» отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемаятриггером , которая способна хранить одну двоичную цифру (разряд двоичного кода).

Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления.

Существует несколько типов регистров, отличающихся видом выполняемых операций. Некоторые важные регистры имеют свои названия, например:

    сумматор - регистр АЛУ, участвующий в выполнении каждой операции;

    счетчик команд - регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти;

    регистр команд - регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные - для хранения кодов адресов операндов.

Устройство управления координирует работу всех элементов и устройств процессора и памяти. В последовательности, определяемой программой, оно выбирает из ОЗУ команду за командой. Каждая команда декодируется; по требованию из указанных в ней ячеек ОЗУ передаются в АЛУ (или наоборот) элементы данных; АЛУ настраивается на выполнение действия, указанного командой (в этом действии могут участвовать также устройства ввода-вывода); дается команда на выполнение этого действия. Этот процесс будет продолжаться до тех пор, пока не возникнет одна из следующих ситуаций:

    исчерпаны входные данные;

    от одного из входных устройств поступила команда на прекращение работы;

    выключение питания ЭВМ.

Оперативное запоминающее устройство (ОЗУ ) («память») - блок ЭВМ, предназначенный для размещения программ, а также временного хранения некоторых входных данных и промежуточных результатов. ОЗУ способно записывать (считывать) элементы программ и данных в произвольное место памяти (из произвольного места памяти), имеет высокое быстродействие.

Запоминающие устройства бывают трех видов:

    двунаправленные (допускают считывание и запись данных), к ним принадлежит ОЗУ;

    полупостоянные , предназначенные для хранения редко изменяемой информации, (например, данные о конфигурации ЭВМ) (ППЗУ);

    постоянные , допускающие только считывание один раз записанной в них информации (ПЗУ).

В основу построения подавляющего большинства компьютеров положены общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом:

1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды.

А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.

Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного илибезусловного переходов , которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп».

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

При рассмотрении ЭВМ принято различать их архитектуру иструктуру .

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств.Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними.Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Функциональные возможности ЭВМ обусловливают их важнейшие технико-эксплуатационные характеристики :

    быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;

    разрядность и формы представления чисел, с которыми оперирует ЭВМ;

    номенклатура, емкость и быстродействие всех запоминающих устройств;

    номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;

    типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутримашинного интерфейса);

    способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);

    типы и технико-эксплуатационные характеристики операционных систем, используемых в машине;

    наличие и функциональные возможности программного обеспечения;

    способность выполнять программы, написанные для других типов ЭВМ (программная совместимость с другими типами ЭВМ);

    система и структура машинных команд;

    возможность подключения к каналам связи и к вычислительной сети;

    эксплуатационная надежность ЭВМ;

    коэффициент полезного использования ЭВМ во времени, определяемый соотношением времени полезной работы и времени профилактики.

Микро-ЭВМ, к разряду которых относятся ПК, обладают следующими характеристиками:

    производительность - до 100 MIPS;

    емкость основной памяти - 4-2048 Мбайт;

    емкость дисковой памяти - 2-160 Гбайт;

    число поддерживаемых пользователей - 16-512.

Все модели мини-ЭВМ разрабатываются на основе микропроцессорных наборов интегральных микросхем, 16-, 32-, 64-разрядных микропроцессоров.

В класс персональных компьютеров входят различные машины - от дешёвых домашних и игровых с небольшой оперативной памятью, с памятью программы на кассетной ленте и обычным телевизором в качестве дисплея (80-е годы), до сверхсложных машин с мощным процессором, винчестерским накопителем ёмкостью в сотни Гигабайт, с цветными графическими устройствами высокого разрешения, средствами мультимедиа и другими дополнительными устройствами.

Персональный компьютер для удовлетворения требованиям общедоступности и универсальности применения должен иметь следующие характеристики:

    малую стоимость, находящуюся в пределах доступности для индивидуального покупателя (от нескольких сотен до 5 -10 тыс. у.е.);

    автономность эксплуатации без специальных требований к условиям окружающей среды;

    гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;

    «дружественность» операционной системы и прочего программного обеспечения, обусловливающую возможность работы с ней пользователя без специальной профессиональной подготовки;

    наличие ЗУ на магнитных дисках емкостью от 20 до 200 и более Гбайт, объём оперативной памяти не менее 128 Мбайт;

    высокую надежность работы (более 5000 ч. наработки на отказ).

Классификация персональных компьютеров приведена в табл. 1.

Таблица 1. Классификация персональных ЭВМ

Класс персональных ЭВМ

Масса, кг

Источник питания

Примечание

Настольные (desktop )

5-10 (без монитора

Бытовая электросеть

Используются внутри помещений для оборудования рабочих мест; обеспечивают широкие функциональные возможности

Переносные (laptop )

Бытовая электросеть или аккумуляторные батареи

Предназначены для использования в поездках. Обеспечивают широкие функциональные возможности, включая подключение к вычислительным сетям

Блокнотные (notebook )

Аккумуляторные батареи или преобразователь напряжения

Предназначены для использования в поездках. Обеспечивают сокращенные функциональные возможности. Особенно это касается применения разнообразных периферийных устройств

Электронный секретарь, электронная записная книжка (PDA, Personal Digital Assistant)

Батареи или преобразователь напряжения

Как правило, помещаются в кармане, можно легко держать в руке. Набор функций дает возможность выполнять записи текстов, некоторые вычисления, вести расписание, телефонный справочник, переводить фразы с иностранных языков и др.

Аппаратные средства ПК

Студента СПБГУТД

Группа № 1-ЭД-2 «В»

Меркоева Дмитрия

Санкт-Петербург

Введение……………………………………………………….3

Конфигурация персонального компьютера.......................3

Материнская плата…………………………………………..5

BIOS …………………………………………………………….6

IBM PC и принцип открытой архитектуры……………….8

Введение

В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в1971 г. произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том вне всякого сомнения знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем - персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до маститых ученых и инженеров. Этим машинам, не занимающим и половины поверхности обычного письменного стола, покоряются все новые и новые классы задач, которые ранее были доступны (а по экономическим соображениям часто и недоступны - слишком дорого тогда стоило машинное время мэйнфреймов и мини-ЭВМ) лишь системам, занимавшим не одну сотню квадратных метров. Наверное, никогда прежде человек не имел в своих руках инструмента, обладающего столь колоссальной мощью при столь микроскопических размерах.

У персонального компьютера есть два важных преимущества по сравнению со всеми другими видами компьютеров: он имеет относительно простое управление и может решать достаточно широкий класс задач.

Если ранее на ЭВМ могли в основном работать только профессиональные программисты (практически для любой задачи приходилось создавать свою программу), то теперь ситуация коренным образом изменилась. В настоящее время разработаны десятки тысяч программ по всем областям знаний. С ними работают десятки миллионов квалифицированных пользователей.

Согласно статистическим данным, самыми распространенными и используемыми программами являются операционные системы и текстовые редакторы.

Знание характеристик компьютерных устройств поможет квалифицированному пользователю выбрать оптимальную конфигурацию персонального компьютера для решения поставленной практической задачи.

Конфигурация персонального компьютера

Персональными называются компьютеры, на которых может одновременно работать только один пользователь. Персональные компьютеры имеют только одно рабочее место.

Под термином «конфигурация» компьютера понимают список устройств, входящих в его состав.

В соответствие с принципом открытой архитектуры аппаратное обеспечение компьютеров (Hardware) может быть весьма различным. Но любой персональный компьютер имеет обязательный и дополнительный набор устройств.

Обязательный набор устройств:

· Монитор - устройство вывода текстовой и графической информации.

· Клавиатура - устройство для ввода текстовой информации.

· Системный блок - объединение большого количества различных компьютерных устройств.

В системном блоке находится вся электронная начинка компьютера. Основными деталями системного блока являются:

· Процессор - главное компьютерное устройство управления и проведения вычислений.

· Материнская плата - устройство для крепления на ней других внутренних компьютерных устройств.

· Оперативная память (ОЗУ) - устройство для хранения программы и данных во время ее работы в компьютере.

· Постоянное запоминающее устройство (ПЗУ) - устройство для постоянного хранения некоторых специальных программ и данных.

· Кэш память - сверхбыстрая память для хранения особо важной информации.

· Сопроцессор - устройство для выполнения операций с плавающей запятой.

· Видеокарта - устройство, обеспечивающее вывод информации на монитор.

· Флоппи дисковод - устройство для хранения и переноса информации между ПК.

· Винчестер - основное устройство для хранения информации на компьютере.

· Блок питания - устройство для распределения электрической энергии между другими компьютерными устройствами.

· Контроллеры и шина - предназначены для передачи информации между внутренними устройствами ПК.

· Последовательные и параллельные порты - предназначены для подключения внешних дополнительных устройств к компьютеру.

· Корпус - предназначен для защиты материнской платы и внутренних устройств компьютера от повреждений.

Дополнительные устройства, которые можно подключать к компьютеру:

· Принтер - предназначен для вывода текстовой и графической информации на бумагу.

· Дисковод для компакт дисков (CD ROM) - для работы с компакт дисками.

· Дисководы DVD - современные устройства для работы с носителями данных объемом до 17 Гбайт.

· Звуковая карта - устройство для работы со звуковой информацией.

· Мышь - манипулятор для ввода информации в компьютер.

· Джойстик - манипулятор для передачи информации о движении в компьютер.

· Планшет - устройство для работы с компьютерной графикой.

· TV тюнер является устройством, позволяющим ПК принимать и показывать программы телевидения.

· Колонки - внешние устройства для воспроизведения звуков.

· Факс-модем - устройство для связи между компьютерами через телефонную линию.

· Плоттер - устройство для вывода чертежа на бумагу.

· Сканер - для ввода графических изображений в компьютер.

· Ленточные накопители - устройства для проведения резервного копирования данных на магнитную ленту.

· Источник бесперебойного питания - устройство защиты компьютера от перебоев в электроснабжении.

· Накопители на съемных дисках - устройства, в будущем заменяющие флоппи дисководы.

· Графический акселератор - устройство для ускорения обработки и вывода трехмерной графики.

и многое другое...

Для обозначения конфигурации конкретного персонального компьютера применяют записи стандартного типа. Разберем ее на примере:

Pentium II - 333/ 64 Sdram / 3.1Gb / ATI 3D Char 4 Mb / Mini / CD ROM 24X + SB 16 ESS68

Итак, что это за компьютер? Вначале пишется тип процессора - Pentium II с тактовой частотой 333 МГц. Далее обозначен объем и тип оперативной памяти - 64 Мбайта. В ПК встроен винчестер объемом 3.1 Гбайт. Используется видеокарта ATI 3D Char c 4 Мбайтами видеопамяти, видеокарта оптимизирована для работы с трехмерной графикой 3D. Корпус MiniTower. Также в состав ПК входит 24-скоростной дисковод для компакт дисков и простая звуковая карта Sound Blaster. В стандартную конфигурацию компьютера всегда входит 3.5 дюймовый флоппи-дисковод, поэтому он в записи не указывается. Мышь также входит в стандартную конфигурацию. Но монитор совместно с данным комплектом не продается. Его необходимо покупать отдельно. Общий итог - данный компьютер имеет минимальную стандартную конфигурацию для использования в офисе и дома весной 1999 г.

Материнская плата

Материнская плата (Mother board) является основной платой компьютера, т.к. именно на ней крепятся все компьютерные устройства, например, процессор, звуковая карта и т.д.

Материнские платы собираются на основе специального набора микросхем, называемого Chipset.В зависимости от типа устанавливаемого процессора, необходимо использовать различные chipsetы, и получать, т.о. материнские платы разных типов.

Так, для 486 процессоров существовал специальный тип 486 материнских плат. Для процессоров Pentium использовались два вида плат: первый для процессоров с тактовой частотой 60 и 66 МГц, а второй - для всех остальных. Для последующих типов процессоров также необходимо использовать соответствующие системные платы. Так, например, для процессора Celeron используется плата на наборе микросхем 443EX.

Самым популярным производителем материнских плат в России считается фирма Asustek. Хотя на практике можно использовать компьютеры с материнской платой различных производителей. Например, A-Bit, A-Trend, Giga - Byte и другие.

Последней разработкой в области системных плат для настольных ПК стала технология NLX, и, воз­можно, именно она окажется ведущей технологией ближайшего будущего. Платы этого стандарта, на пер­вый взгляд, напоминают платы LPX, но на самом деле они значительно усовершенствованы. Если на пла­ты LPX нельзя установить самые новые процессоры из-за их более крупных размеров и повышенного тепловыделения, то в разработке NLX эти проблемы прекрасно разрешены. Вот каковы основные преимущества этого нового стандарта, перед остальными.

Поддержка современных процессорных технологий. Это особенно важно для систем с процессором Pentium II, поскольку размер его корпус Single Edge Contact (т.е. корпуса, с единственным рядом расположенных по периметру контактов) практически не позволяет устанавливать этот процессор на платах Baby-AT и LPX. И хотя некоторые производители системных плат все же предлагают АТХ-системы на основе Pentium II, на их платах остается место только для двух 72-контактных разъемов модулей SIMM!

Гибкость по отношению к быстро изменяющимся процессорным технологиям. Идея гибких систем с объединительной платой нашла новое воплощение в конструкции плат NLX, установить которые можно быстро и легко, не разбирая при этом всю систему на части. Но в отличие от традиционных систем с объединительными платами, у нового стандарта NLX есть поддержка таких лидеров ком­пьютерной индустрии, как AST, Digital, Gateway, Hewlett-Packard, IBM, Micron, NEC и другие.

  1. Фоули Р. Гоминиды как расселяющиеся животные
  2. Богатенков Д.В. Палеодемография (пример одной работы)
  3. Бужилова А.П. Сифилис в европе и колумб в америке: связаны ли эти события
  4. Медникова М.Б. Эпохальная изменчивость размеров тела человека: мифы и реальность
  5. Козловская М.В. Пищевые новации производящего хозяйства

АППАРАТНЫЕ СРЕДСТВА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА

Все ЭВМ, за небольшим исключением, имеют общую принципиальную схему или, как говорят, архитектуру.

Архитектура определяет принцип действия, информационные связи и взаимное соединение основных логических узлов ЭВМ:

§ центрального процессора;

§ периферийных процессоров;

§ оперативного ЗУ (запоминающего устройства);

§ внешних ЗУ;

§ периферийных устройств.

В основу архитектуры ЭВМ положен модульно-магистральный принцип. Модульный принцип позволяет комплектовать нужную конфигурацию, модернизировать её. Модульная организация опирается на магистральный (шинный) принцип обмена информацией. Обмен информацией между устройствами производится по 3-м многоразрядным шинам (многопроводные линии связи).

Принцип открытой архитектуры – это возможность постоянного усовершенствования компьютера IBM PC в целом и его отдельных частей с использованием новых устройств, которые полностью совместимы друг с другом независимо от фирмы-изготовителя. Это даёт наибольшую выгоду пользователям, которые могут расширять возможности своих машин, покупая новые устройства и вставляя их в свободные разъёмы (слоты) на системной (материнской) плате.

Общая структура персонального компьютера

Любой компьютер содержит:

1) Арифметико-логическое устройство (АЛУ);

2) Запоминающее устройство (память);

3) Управляющее устройство;

4) Устройство ввода-вывода информации (УВВ) и имеет программу, хранимую в его памяти (архитектура Джона фон Неймана).

К базовой конфигурации (составу оборудования) относятся:

1. Системный блок;

2. Монитор;

3. Клавиатура;

Всё, без чего можно обойтись при основной работе

за компьютером, относится к периферийному оборудованию:

1. Принтер;

2. Сканер;

3. Модем;

4. Колонки

Устройство системного блока.

Системный блок изготавливается в форме параллелепипеда, который может устанавливаться горизонтально или вертикально. Если корпус системного блока имеет горизонтальную конструкцию, то его используют как подставку для монитора. При вертикальной конструкции корпуса монитор располагается рядом. В некоторых моделях системный блок и монитор объединены.

На передней панели корпуса системного блока располагаются кнопки включения системного блока и установки некоторых режимов работы.

POWER- кнопка включения системного блока. На некоторых моделях системных блоков эта кнопка спрятана на заднюю панель.

RESET- кнопка "холодного" перезапуска компьютера. Позволяет перезагрузить компьютер в критических ситуациях, например, при "зависании" программ.

TURBO – кнопка переключения тактовой частоты т.е. изменения быстродействия компьютера. Рядом с этой кнопкой находится световое табло, высвечивающее значение тактовой частоты. В некоторых случаях при работе с программами, написанными для устаревших моделей компьютеров, требуется более низкая частота, которая устанавливается переключением этой кнопки.

На передней панели системного блока находится дисковод для одного или двух гибких дисков.

В системном блоке расположены основные части компьютера, управляющие работой всех остальных устройств. Внутри системного блока находятся:

ú центральный процессор или микропроцессор, управляющий работой всего компьютера;

ú постоянная память, в которой хранятся универсальные программы, обеспечивающие функционирование компьютера, и не исчезающие, после его выключения;

ú оперативная память, в которой хранятся и выполняются программы и данные в то время, пока работает компьютер;

ú адаптеры и контроллеры, управляющие работой периферийных устройств;

ú коммуникационные порты, обеспечивающие связь данного персонального компьютера с периферийными устройствами и с другими персональными компьютерами;

ú блок питания, подающий напряжение от сети к различным устройствам компьютера;

ú накопители или дисководы для гибких магнитных дисков;

ú накопитель на жестком магнитном диске или винчестер.

1. Материнская (системная)плата – самая большая в ПК плата, на которой размещены процессор, сопроцессор, контроллеры, обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память (RAM), кэш-память, элемент ROM-BIOS (базовой системы ввода/вывода), аккумуляторная батарея, кварцевый генератор тактовой частоты, видеокарта, звуковая карта и другие устройства.

Указанные устройства подключаются к материнской плате через специальные разъёмы (слоты):

Общая производительность материнской платы определяется тактовой частотой и количеством (разрядностью) данных , обрабатываемых в единицу времени центральным процессором, а также разрядностью шины обмена данных между различными устройствами материнской платы.

Архитектура материнских плат постоянно совершенствуется: увеличивается их функциональная насыщенность, повышается производительность. Стало стандартом наличие на материнской плате таких встроенных устройств, как двухканальный E-IDE-контроллер HDD (жёстких дисков), контроллер FDD (гибких (floppy) дисков), усовершенствованного параллельного (LPT) и последовательного (COM) портов, а также последовательного инфракрасного порта.

На материнской плате расположены:

1.1. Центральный процессор (центральное процессорное устройство – CPU) – мозг ЭВМ – основное устройство ПК, которое обрабатывает информацию, выполняют все вычисления и управляет работой компьютера.

Применительно к вычислительной технике под процессором понимают, обладающее способностью выбирать, декодировать и выполнять команды а также передавать и принимать информацию от других устройств.

Производство современных персональных компьютеров начались тогда, когда процессор был выполнен в виде отдельной микросхемы, выполняющей обработку информации.

Производительность CPU характеризуется следующими основными параметрами:

Степенью интеграции;

Внутренней и внешней разрядностью обрабатываемые данных;

Тактовой частотой;

Памятью, к которой может адресоваться CPU.

Степень интеграции микросхемы показывает, сколько транзисторов (самый простой элемент любой микросхемы) может поместиться на единице площади. Для процессора Pentium Intel эта величина составляет приблизительно 3 млн. на 3,5 кв.см, у Pentium Pro – 5 млн.

Внутренняя разрядность процессора определяет, какое количество битов он может обрабатывать одновременно при выполнении арифметических операций (в зависимости от поколения процессоров – от 8 до 32 битов).

Внешняя разрядность процессора определяет сколько битов одновременно он может принимать или передавать во внешние устройства (от 16 до 64 и более в современных процессорах). Тактовая частота определяет быстродействие процессора. Тактовая частота указывает, сколько элементарных операций (тактов) микропроцессор выполняет за одну секунду и является самой важной характеристикой процессора, связанной с его быстродействием(измеряется в МГц). Для процессора различают внутреннюю (собственную) тактовую частоту процессора (с таким быстродействием могут выполняться внутренние простейшие операции) и внешнюю (определяет скорость передачи данных по внешней шине).

Количество адресов ОЗУ, доступное процессору, определяется разрядностью адресной шины.

Количество фирм, разрабатывающих и производящих процессоры для IBM-совместимых компьютеров, невелико. В настоящее время известны: Intel, Cyrix, AMD, NexGen, Texas Instrument...

Фирма Intel является самым популярным производителем. _

Компания AMD является главным конкурентом Intel, т.к. производит около 80% процессоров с архитектурой IA32 (архитектура IA32 – Intel Architecture, 32-разрядная). Процессор Athlon – первый проект AMD, в котором она ото­шла от прямого копирования архитектур Intel и предложила рынку свой вариант платформы для PC. Процессор имеет кэш-­память объемом 128 Кбайт. Здесь реализован не только модуль ММХ, но и дополнительный набор инструкций, кото­рый обеспечивает более эффективную обработку графической информации. Фирма AMD создает и процессор Duron – конкурент процессора Celeron.

Кроме этих двух компаний, более простые и менее производи­тельные процессоры архитектуры IA32 выпускают также компании Rise и Centaur. Объем выпуска этих процессоров не велик – менее 1% рынка. Компьютеры Macintosh (настольные - iMac, PowerMac G4, PowerMac G4 Cube и ноут­буки - iBook, PowerBook G4) фирмы Apple существенно отличаются от IBM PC, хотя современному пользователю компьютера эти отличия и не очень заметны. В настоящее время в компьютерах Macintosh применяются два вида процессоров: G3, G4 компании Motorola и Power PC от IBM. Эти процессоры разрабатывались обеими фирмами совместно, ис­пользуя последние достижения технологии и учитывая опыт ис­пользования других процессоров. В результате получился очень эффективный процессор, который при равной частоте с процес­сорами Intel обеспечивает большую производительность. Но, пока частота работы процессоров G3, G4 и Power PC ниже.

1.2. Внутренняя память компьютера.

Память компьютера предназначена для хранения информации. В компьютере имеются два вида памяти: внутренняя и внешняя. Внутренняя память расположена в системном блоке. У компьютера есть три вида внутренней памяти: постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ), кэш-память и видеопамять.

1.2.1. Оперативная память (по-английски – Random Acces Memory или RAM, что переводится как "память с произвольной выборкой") - быстродействующая память ПК, хранящая информацию при включенном питании. Работа компьютера с пользовательскими программами начинается после того как данные будут считаны из внешней памяти в ОЗУ . Центральный процессор имеет доступ к данным, находящимся в оперативной памяти. ОЗУ работает синхронно с центральным процессором и имеет малое время доступа. Оперативная память сохраняет данные только при включенном питании. При выключении источника питания информация в ОЗУ не сохраняется (разрушается). Отключение питания приводит к необратимой потере данных, поэтому пользователю, работающему с большими массивами данных в течение длительного времени, рекомендуют периодически сохранять промежуточные результаты на внешнем носителе

Основой ОЗУ являются микросхемы памяти (chips), которые объединяются в блоки (банки) различной конфигурации. Для нормального функционирования системы большое значение имеет согласование быстродействия центрального процессора и ОЗУ. Оперативная память бывает: SIMM (Single In-Line Memory Module) и DIMM (Dual In-Line Memory Module).

Функции оперативной памяти:

ú приём информации от других устройств;

ú запоминание информации;

ú передача информации по запросу в другие устройства машины.

Объем оперативной памяти - один из важнейших параметров, опреде­ляющих скорость работы программных средств ПК. Необходимым объемом сегодня является 64 Мб и выше, однако, для эффективной работы новейшего ПО требования к объему оперативной памяти возрастают. Оперативная память выпускается модулями стандартных размеров по 16, 32, 64, 128, 256, 512 Мб и более. На материнской плате, как правило, есть не­сколько разъемов для модулей памяти, что предполагает возможность наращивания объема оперативной памяти.

Машины с процессором 286 имеют в среднем размер ОЗУ 1 – 2 Мб, 386 – 2–8 Мб, 486 – 8–16 Мб, Pentium и Р6 – 16– 2 Мб, Рentium 2 и Рentium 3 – 32 –128 Мб, Рentium4 – 64 – 256 Мб.

1.2.2. В постоянной памяти (ПЗУ-BIOS или CMOS Setup) – по-английски Read-Only Memory- ROM что означает "память только для чтения" – хранится программа BIOS (Basic Input/Output System), что переводится на русский язык как Базовая система ввода-вывода . Эта программа обеспечивает при включении компьютера тестирование его основных узлов и загрузку операционной системы. BIOS находится в постоянной памяти компьютера и недоступна произвольным действиям пользователя. Без этой программы не начнет своей работы ни один компьютер. Данные в ПЗУ занесены при изготовлении.

Для ускорения доступа к оперативной памяти используется специальная сверхбыстродействующая КЭШ-память , которая располагается как бы «между» микропроцессором и оперативной памятью. Это сверхоперативная сверхскоростная промежуточная память. КЭШ устраняет простои процессора, так как скорость обмена процессора с КЭШ в несколько раз выше, чем с ОЗУ. Наличие КЭШ в 256 Кб может увеличить производительность ПК на 20%. Размер КЭШ-памяти составляет от 64 Кб до 512 Кб. В ней хранятся копии наиболее часто используемых участков оперативной памяти.

Микропроцессоры Pentium Pro содержат кэш-память в едином корпусе с микропроцессором.

Энерго­независимая CMOS - память – CMOS RAM (Complementary Metal-Oxide Semi­conductor RAM), постоянно питающаяся от своего аккумулятора, хранят параметры конфигурации компьютера, которые проверяются при каждом включении системы. Это полупостоянная память.

Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера – SETUP .

Еще один вид памяти – видеопамять , т.е. память, используемая для хранения изображения, выводимого на экран монитора. Это специальная оперативная память, в которой формируется графическое изображение. Чаще всего её величина от 512Кб до 4 Мб для самых лучших ПК при реализации 16,7 млн. цветов. Эта память обычно входит в состав видеоконтроллера.

1.3 Видеоадаптер (графический адаптер) - плата, выполняющая вес опе­рации, связанные с управлением экраном (монитором) компьютера.

Характеристики:

· Разрешение , которое указывает на коли­чество точек на экране по горизонтали и вертикали для отображения информации. Стандартными значениями для разрешения являются 800x60 или 1024x768.

· Современные видеоадаптеры могут выполнять функции обработки изображений, для этого они имеют собственную видеопамять . Типовым объемом видеопамяти в настоящее время счита­ется объем от16 до 512 Мб.

1.4 Звуковая карта (саундбластер) – специальная плата, выполняющая операции по обра­ботке звука. К выходу саундбластера подключают колонки или наушники.. Для записи звука имеется разъем, позво­ляющий подключить микрофон.

Основной параметр – разрядность, определяющая количество битов, используемых для кодирования звука. Предпочтительным вариантом сегодня считает­ся 32-разрядная звуковая карта.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...