Что такое реактивная мощность. Понятия активной, полной и реактивной мощностей

Реактивная мощность и энергия, реактивный ток, компенсация реактивной мощности

Реактивная мощность и энергия ухудшают показатели работы энергосистемы , то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи , что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности , в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности . Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Потребители реактивной мощности

Основные потребители реактивной мощности - , которые потребляют 40 % всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8 %; преобразователи 10 %; трансформаторы всех ступеней трансформации 35 %; линии электропередач 7 %.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40 .

Малонагруженные трансформаторы также имеют низкий (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии , а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Структура потребителей реактивной мощности в сетях энергосистем (по установленной активной мощности):


Прочие преобразователи: переменного тока в постоянный, тока промышленной частоты в ток повышенной или пониженной частоты, печная нагрузка (индукционные печи, дуговые сталеплавильные печи), сварка (сварочные трансформаторы, агрегаты, выпрямители, точечная, контактная).

Суммарные абсолютные и относительные потери реактивной мощности в элементах питающей сети весьма велики и достигают 50% мощности, поступающей в сеть. Примерно 70 - 75% всех потерь реактивной мощности составляют потери в трансформаторах.

Так, в трехобмоточном трансформаторе ТДТН-40000/220 при коэффициенте загрузки, равном 0,8, потери реактивной мощности составляют около 12%. На пути от электростанции происходит самое меньшее три трансформации напряжения, и поэтому потери реактивной мощности в трансформаторах и автотрансформаторах достигают больших значений.

Способы снижения потребления реактивной мощности. Компенсация реактивной мощности

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок) .

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.
Наверняка многие из вас слышали о реактивной электроэнергии. Зная, насколько сложен для понимания этот термин, давайте разберём детально отличия реактивной и активной энергии. Важно осознать тот факт, что реактивную электроэнергию мы можем наблюдать только в переменном токе. Там, где течёт постоянный ток, реактивная энергия не присутствует. Обусловлено это природой появления реактивной энергии .

Через несколько понижающих трансформаторов к потребителю поступает переменный ток, конструкция которых разделяет обмотки низкого и высокого напряжения. То есть получается так, что в трансформаторе отсутствует физический контакт между двумя обмотками, при этом ток всё равно течёт. Объяснить это довольно просто. Электроэнергия всегда передаётся через воздух, который является прекрасным диэлектриком, при помощи электромагнитного поля, составляющая которого – переменное магнитное поле. Оно регулярно пересекает обмотку, появляясь в другой, и не имеет с первой электрического контакта, наводя электродвижущую силу. Коэффициент полезного действия у современных трансформаторов достаточно велик, отсюда потеря электроэнергии сводиться к минимуму, и потому вся мощь переменного тока, который протекает в первичной обмотке, оказывается в цепи вторичной обмотки. Тоже самое происходит в конденсаторе, правда, уже за счёт электрического поля. Ёмкость и индуктивность вместе порождают реактивную энергию. Активная энергия (которой мешает возврат реактивной энергии) преобразовывается в тепловую, механическую и другую.


Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.

Пример : если на электродрели указана величина мощности в 800 Вт и cosφ = 0,8, то отсюда следует, что потребляемая инструментом полная мощность составляет 800/0,8=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.

Реактивный тип нагрузки характеризуется тем, что сначала, неторое время, в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю - реактивная составляющая мощности обычно считается вредной характеристикой цепи.


Для того, чтобы компенсировать противодействие реактивной энергии, применяются специальные устанавливаемые конденсаторы. Это заставляет свести к минимуму появляющееся негативное влияние реактивной энергии. Мы уже отмечали, что реактивная мощность существенно влияет на потерю электрической энергии в сети. Потому получается, что величину той самой негативной энергии приходиться постоянно держать под контролем, и лучший для этого способ – организовать её учёт.

Там, где озабочены этой проблемой (различные промышленные предприятия) довольно часто ставят отдельные специальные приборы, которые ведут учёт не только самой реактивной энергии, но и активной её части. Учёт ведётся в трёхфазных сетях по индуктивной и ёмкостной составляющей. Обычно такие счётчики, это не что иное, как аналого-цифровое устройство, которое преобразует мощность в аналоговый сигнал, который превращается в частоту следования электро-импульсов. Сложив их, мы можем судить о количестве потребляемой энергии. Обычно счётчик сделан из пластмассового корпуса, где установлены 3 трансформатора и блок учёта на печатной плате. На внешней стороне располагается ЖК экран или светодиоды.


Предприятия в настоящее время всё чаще ставят универсальные счётчики учёта электроэнергии, которые измеряют количество как активной, так и реактивной энергии. Более того, такие приборы могут совмещать функции от двух, а иногда и более устройств, что позволяет снижать затраты на обслуживание и позволяет сэкономить во время покупки. Такие устройство способны вычислять реактивную и активную мощность, а также измерять мгновенные значения напряжений. Счётчик фиксирует, каков уровень потребления энергии и показывает всю информацию на дисплее 3-мя сменяющимися кадрами (индуктивная составляющая, ёмкостная составляющая, а также объём активной энергии). Современные модели позволяют передавать данные по ИК цифровому каналу, защищены от магнитных полей, хищения энергии. Более того, мы получаем более точные измерения и малое энергопотребление, что выгодно отличает новые модели от предшественников.

Увидела в интернете энергосберегающие устройства, которые, как я поняла прсто включаются в ближайшую к счетчику розетку. Может кто пользовался? Действительно экономят энергию? И еще пишут, что они повышают качество электроэнергии и таким образом предотвращают порчу электроприборов. Хотелось бы услышать отзывы.

При расчете электрической мощности, потребляемой любым электротехническим или бытовым устройством, обычно учитывается так называемая полная мощность электрического тока, выполняющего определённую работу в цепи данной нагрузки. Под понятием «полная мощность» подразумевается вся та мощность, которая потребляется электроприбором и включает в себя как активную составляющую, так и составляющую реактивную, которая в свою очередь определяется типом используемой в цепи нагрузки. Активная мощность всегда измеряется и указывается в ваттах (Вт), а полная мощность приводится обычно в вольт-амперах (ВА). Различные приборы - потребители электрической энергии могут работать в цепях, имеющих как активную, так и реактивную составляющую электрического тока.

Активная составляющая потребляемой любой нагрузкой мощности электрического тока совершает полезную работу и трансформируется в нужные нам виды энергии (тепловую, световую, звуковую и т.п.). Отдельные электроприборы работают в основном на этой составляющей мощности. Это - лампы накаливания, электроплиты, обогреватели, электропечи, утюги и т.п.
При указанном в паспорте прибора значении активной потребляемой мощности в 1 кВт он будет потреблять от сети полную мощность в 1кВА.

Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.

Пример: если на электродрели указана величина мощности в 600 Вт и cosφ = 0,6, то отсюда следует, что потребляемая инструментом полная мощность составляет 600/0,6=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.

При рассмотрении вопроса об активной и реактивной составляющих электроэнергии (точнее - её мощности), обычно имеются в виду те явления, которые происходят в цепях переменного тока. Оказалось, что различные нагрузки в цепях переменного тока ведут себя совершенно по-разному. Одни нагрузки используют передаваемую им энергию по прямому назначению (т.е. - для совершения полезной работы), а другой тип нагрузок сначала эту энергию запасает, а потом снова отдаёт её источнику электропитания.

По виду своего поведения в цепях переменного тока, различные потребительские нагрузки делятся на следующие два типа:

1. Активный тип нагрузки поглощает всю получаемую от источника энергию и превращает её в полезную работу (свет от лампы, например), причём форма тока в нагрузке в точности повторяет форму напряжения на ней (сдвиг фаз отсутствует).

2. Реактивный тип нагрузки характеризуется тем, что сначала (в течение некоторого промежутка времени), в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия (в течение определённого промежутка времени) отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю (а не перекачивание её туда и обратно) - реактивная составляющая мощности обычно считается вредной характеристикой цепи.

Потери на реактивную составляющую в сети напрямую связаны с величиной рассмотренного выше коэффициента мощности, т.е. чем выше cosφ потребителя, тем меньше будут потери мощности в линии и дешевле обойдётся передача электроэнергии потребителю.
Таким образом, именно коэффициент мощности указывает нам на то, насколько эффективно используется рабочая мощность источника электроэнергии. В целях повышения величины коэффициента мощности (cosφ) во всех видах электрических установок применяются специальные приёмы компенсации реактивной мощности.
Обычно для увеличения коэффициента мощности (за счёт уменьшения сдвига фаз между током и напряжением - угла φ) в действующую сеть включают специальные компенсирующие устройства, представляющие собой вспомогательные генераторы опережающего (емкостного) тока.
Кроме того, очень часто для компенсации потерь, возникающих из-за индуктивной составляющей цепи, в ней используются батареи конденсаторов, подключаемые параллельно рабочей нагрузке и используемые в качестве синхронных компенсаторов.

В настоящее время взаимоотношения энергоснабжающих организаций и потребителей электроэнергии рассматриваются широким кругом лиц неэнергетического образования (коммерческие менеджеры, юристы и другие специалисты). Использование понятия реактивная мощность (реактивная энергия) в практике денежных расчетов между поставщиками и потребителями электроэнергии и наличие отдельных счетчиков активной и реактивной энергии вызывает у многих представление о поставке потребителям двух видов продукции. Это не так. По электрической сети не передаются электроны разного цвета - красные активной энергии и голубые реактивной. Так что же такое реактивная мощность и реактивная энергия?

Рассмотрим в самом простом виде свойства переменного тока. Переменный ток называют так не в том смысле, что его значение изменяется в процессе потребления энергии. Оно может оставаться и постоянным. Под переменным током в узком смысле понимают периодический ток, мгновенные значения которого в течение каждого небольшого периода (для переменного тока частоты 50 Гц это 1/50 доля секунды) проходят цикл изменения от минимального до максимального значения, и наоборот. Графически этот цикл отображается синусоидой. Переменным в этом смысле является и напряжение. В целом же для цепей, в которых и напряжение, и ток циклически изменяются, используется термин «цепи переменного тока».

В цепях переменного тока существует много элементов, которые разделены воздушными промежутками - обмотки высокого и низкого напряжения трансформаторов или статор и ротор вращающейся машины (двигателя и генератора) не имеют электрической связи между собой. Тем не менее электрическая энергия передается через это воздушное пространство, являющееся фактически непроводящим ток диэлектриком. Это происходит в связи с возникновением под действием переменного тока переменного магнитного поля в индуктивности, а под действием переменного напряжения - переменного электрического поля в емкости (в комбинации — электромагнитного поля). Полям, как известно, воздух не преграда. Переменное магнитное поле, образуемое одной из разделенных обмоток, постоянно пересекает своими магнитными линиями витки другой обмотки, наводя в ней электродвижущую силу. Ее величина такова, что вся мощность первичной обмотки переходит на вторичную обмотку. В конденсаторе те же самые функции осуществляет электрическое поле.

Магнитное и электрическое поля существуют вокруг любого проводника, который находится под напряжением и по которому идет ток. Теоретически можно передать мощность по воздуху с одной из параллельно проложенных линий на другую. Правда, чтобы передать существенную мощность, линии должны быть длиной в сотни тысяч километров. Для переброски через воздушные промежутки большой мощности в устройстве приемлемого размера нужно сильное магнитное поле, сконцентрированное в небольшом пространстве. Это достигается обматыванием вокруг металлического сердечника (ярма) многочисленных витков, расположенных близко друг к другу, и применением для изготовления сердечников специальной стали, обеспечивающей большую взаимоиндукцию.

Электромагнитная энергия непосредственно преобразуется в тепловую, механическую, химическую и другие виды полезной работы в элементах, обладающих активным сопротивлением, обозначаемым R. В элементах, представляющих собой индуктивность L и емкость С, электромагнитная энергия на половине периода запасается, а на второй половине периода возвращается в источник. При этом синусоида тока, создающего магнитное поле, всегда на четверть периода (90 эл. градусов) отстает от синусоиды напряжения, а синусоида тока, создающего электрическое поле, опережает.

Сопротивления таких элементов связаны с индуктивностью и емкостью и частотой f соотношениями: X L = 2πfL и X С = 1/2πfС. Из этих соотношений видно, что эти сопротивления существуют только в цепях переменного тока, а в цепях постоянного тока (f = 0) X L превращается в 0 (короткое замыкание), а X С — в бесконечность (разрыв цепи). В связи с возвратным характером их действия эти сопротивления называют реактивными, а ток, обусловленный обменной электромагнитной энергией, — реактивным током. Так как реактивный ток сдвинут относительно активного на 90°, то естественно, что полный ток определяется как корень квадратный из суммы квадратов активного и реактивного тока.

Прохождение через сеть «сдвинутого» тока можно сравнить с продвижением людей через проход, пропускная способность которого составляет, например, 10 человек одновременно. При этом в восьми рядах люди все время идут в одном направлении, а в двух рядах одни и те же люди то идут, то возвращаются. В результате число людей, перешедших на другую сторону, следует считать исходя из пропускной способности восемь человек, а проход все время загружен десятью рядами. Аналогична ситуация и с пропускной способностью электрической сети. Разница лишь в том, что активная и реактивная составляющие тока складываются не арифметически, а в квадрате, поэтому реактивная составляющая в меньшей степени занимает сечение. Для полноты сравнения можно считать, что два ряда людей ходят боком и потому занимают меньше места.

Полупериоды запасания и возврата электромагнитной энергии индуктивностью и емкостью сдвинуты на 180° (у первой ток сдвинут на -90°, а у второй на +90°), то есть они находятся в противофазе. Поэтому при наличии рядом сопротивлений X L = X С обменная часть электромагнитной энергии не возвращается в источник, а эти элементы постоянно обмениваются ею между собой. Уже должна возникнуть мысль, а не поставить ли у потребителя электроэнергии, в сетях которого полно индуктивностей, емкость? И пусть они обмениваются между собой этой частью электромагнитной энергии, разгрузив от нее сеть и предоставив ей возможность передавать только ту часть электромагнитной энергии, которая преобразуется в полезную работу? Эта операция и называется компенсацией реактивной мощности (КРМ).

Реактивная энергия не выполняет никакой работы в том смысле, что она не может, как активная энергия, превращаться в тепловую или механическую энергию. Так как в физике понятия энергии и работы тождественны, то, строго говоря, словосочетание «реактивная энергия» физически бессмысленно. Тем не менее, применение на практике этого условного понятия удобно. Раз уж возникает дополнительный ток, названный реактивным, то его произведение на напряжение вроде бы по-другому как мощностью не назовешь, а интегрирование мощности по времени формально называется энергией. Более того, сдвинув на 90° обмотку электрического счетчика, можно заставить его считать произведение на напряжение только тока, сдвинутого на 90°, - появляется наглядное подтверждение существования реактивной энергии (счетчик ведь показывает!).

Реактивный ток не только отнимает у активного тока часть пропускной способности сети, но и на его прохождение по проводам затрачивается определенная часть активной энергии , так как потери мощности ΔР = 3I²R, где I - полный ток. Счетчик активной энергии (по большому счету только ее и можно назвать энергией, поэтому он называется просто счетчик электроэнергии) покажет одно и то же значение и при наличии, и при отсутствии реактивной составляющей тока. Поэтому только по его показаниям нельзя правильно оценить режимы линий передачи электроэнергии (в приведенном выше примере счетчик будет показывать движение восьми рядов, полностью игнорируя два двигающихся туда и обратно). Для оценки же режима сети необходимо знать обе составляющие. Активная и реактивная составляющие полного тока по-разному влияют на напряжение в точках потребления энергии. Потери напряжения от передачи активной составляющей тока в подавляющей степени определяются сопротивлением R, а реактивной — сопротивлением X L . В элементах линий электропередачи обычно X L >> R, поэтому прохождение по сети реактивного тока приводит к гораздо большему снижению напряжения, чем активного тока той же величины.

Итак, в сети переменного тока нет ничего, кроме циклически изменяющихся мгновенных значений тока и напряжения, циклы которых сдвинуты относительно друг друга на некоторую часть периода. При графическом изображении их в виде векторов говорят, что они сдвинуты на некоторый угол φ. Поэтому анекдотический ответ студента на экзамене, что три провода нужны потому, что по первому передается напряжение, по второму ток, а по третьему cos φ, можно считать более близким к истине, чем представление о поставке потребителям двух видов продукции.

Чтобы правильно рассчитать нагрузку потребителей по мощности необходимо знать: какие бывают приемники напряжения. Что такое активная, реактивная и линейная нагрузка? Треугольник мощностей. Что такое пусковой ток? Все это разберем по порядку.

К приемникам напряжения относятся все устройства, которые подключаются к источникам напряжения. К ним относятся: электровентилятор, электроплита, стиральная машина, компьютер, телевизор, электродвигатель, бытовой электроинструмент и другие электропотребители.
В цепях переменного тока нагрузки разделяются на активные, реактивные и нелинейные. В цепях постоянного тока деления на типы нагрузок нет.

Активная нагрузка

К устройствам с активной нагрузкой причисляются нагревательные приборы (утюги, электроплиты, лампы накаливания, электрические чайники). Подобные приборы вырабатывают тепло и свет. Они не содержат индуктивности и емкости. Активная нагрузка преобразовывает электроэнергию в свет и тепло.

Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн). То есть, все устройства, которые содержат электродвигатели.

Треугольник мощностей

Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.

где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;

Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;

S – полная мощность используется для расчета электрических цепей.

Для расчета полной мощности применяем теорему Пифагора: S 2 =P 2 +Q 2 . Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.

Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.

Нелинейная нагрузка

Имеет особенность в том, что напряжение и ток не пропорциональны. К нелинейной нагрузке относятся телевизоры, музыкальные центры, настольные электронные часы, компьютеры и его компоненты. Сама нелинейность обусловлена тем, что данное электронное устройство использует импульсные блоки питания. Для подзарядки конденсатора, которые стоят в импульсном блоке питания, достаточно вершины синусоиды.

В остальное время энергию из сети конденсатор не потребляет. В этом случае ток имеет импульсное качество. К чему это все приводит? Это приводит к тому, что синусоида искажается. Но не все электронные устройства работают с искаженной синусоидой. Эта проблема решается за счет применения стабилизаторов двойного преобразования, где сетевое питание преобразуется в постоянное. Затем из постоянного преобразуется в переменное нужной формы и амплитуды.

Пусковой ток

При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.

В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.

В электродвигателях тоже образуется пусковой ток, пока двигатель не наберет номинальные обороты.

В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...