Делаем блок питания с регулировкой напряжения. Блок питания своими руками

Довольно часто приходится, на время тестирования, запитывать различные поделки или устройства. И пользоваться аккумуляторами, подбирая соответствующее напряжение, стало уже не в радость. Потому решил собрать регулируемый блок питания. Из нескольких вариантов которые пришли в голову, а менно: переделать из компьютерного ATX блока питания, или собрать линейный, или приобрести KIT набор, или собрать из готовых модулей - я выбрал последнее.

Данный вариант сборки мне приглянулся из-за нетребовательных познаний в облати электроники, скоростью сборки, и в случае чего, быстрой замены или добавления какого-либо из модулей. Общая стоимость всех комплектующих вышла около $15, а мощность в итоге получилась ~100 Ватт, при максимальном выходном напряжении 23В.

Для создания данного регулируемого блока питания понадобится:

  1. Импульсный блок питания 24В 4А
  2. Понижающий преобразователь на XL4015 4-38В в 1.25-36В 5А
  3. Вольт-амперметр 3 или 4 символьный
  4. Два понижающих преобразователя на LM2596 3-40В в 1.3-35В
  5. Два потенциометра 10К и ручки к ним
  6. Два терминала под бананы
  7. Кнопка вкл/выкл и разъем под питание 220В
  8. Вентилятор 12В, в моем случае слимовый на 80мм
  9. Корпус, какой угодно
  10. Стоечки и болтики для крепления плат
  11. Провода, я использовал от умершего блока питания ATX.

После нахождения и приобретения всех комплектующих приступаем к сборке по схеме ниже. По ней у нас получится регулируемый блок питания с изменением напряжения от 1.25В до 23В и ограничением тока до 5А, плюс дополнительная возможность зарядки устройств через порты USB, потребляемое количество силы тока, которых, будет отображаться на В-А метре.

Предварительно размечаем и вырезаем отверстия под вольт-амперметр, ручки потенциометров, терминалы, выходы USB на лицевой стороне корпуса.

В виде площадки для крепления модулей используем кусок пластика. Он защитит от нежелаемого короткого замыкания на корпус.

Размечаем и сверлим расположение отверстий плат, после чего вкручиваем стойки.

Прикручиваем пластиковую площадку к корпусу.

Выпаиваем на блоке питания клемму, и впаиваем по три провода на + и -, зараннее отрезаной длины. Одна пара пойдет на основной преобразователь, вторая на преобразователь для питания вентилятора и вольт-амперметра, третья на преобразователь для выходов USB.

Устанавливаем разъем питания 220В и кнопку вкл/выкл. Подпаиваем провода.

Прикручиваем блок питания и подключаем к клемме провода 220В.

С основным источником питания разобрались, теперь переходим к главному преобразователю.

Выпаиваем клеммы и подстроечные резисторы.

Припаиваем провода к потенциометрам, отвечающим за регулировку напряжения и тока, и к преобразователю.

Подпаиваем толстый красный провод от В-А метра и выходной плюс от основного пробразователя к выходной плюсовой клемме.

Готовим USB выход. Соединяем дата + и - у каждого USB отдельно, чтобы подключаемое устройство могло заряжаться, а не синхронизироваться. Припаиваем провода к запаралеленным + и - контактам питания. Провода лучше взять потолще.

Припаиваем желтый провод от В-А метра и минусовой от USB-выходов к выходной минусовой клемме.

Провода питания вентилятора и В-А метра подключаем к выходам дополнительного преобразователя. Для вентилятора можно собрать терморегулятор (схема ниже). Понадобится: силовой MOSFET транзистор (N канальный) (его я достал из обвязки питания процессора на материнской плате), подстроечник 10 кОм, сенсор температуры NTC с сопротивлением 10 кОм (термистор) (его достал из сломанного блока питания ATX). Термистор крепим термоклеем к микросхеме основного преобразователя, или к радиатору на этой микросхеме. Подстроечником настраиваем на определенную температуру срабатывания вентилятора, например, 40 градусов.

Подпаиваем к выходному плюсу другого, дополнительного преобразователя плюс выходов USB.

Берем одну пару проводов из блока питания и подпаиваем на вход основного преобразователя, потом вторую - на вход доп. преобразователя для USB, для обеспечения входящего напряжения.

Прикручиваем вентилятор с решеткой.

Припаиваем третью пару проводов из блока питания к доп. преобразователю для вентилятора и В-А метра. Прикручиваем все к площадке.

Подключаем провода к выходным клеммам.

Прикручиваем потенциометры на лицевую сторону корпуса.

Крепим USB-выходы. Для надежной фиксации было сделано П-образное крепление.

Настраиваем выходные напряжения на доп. преобразователях: на 5.3В, с учетом падения напряжения при подключении нагрузки к USB, и на 12В.

Стягиваем провода для аккуратного внутреннего вида.

Закрываем корпус крышкой.

Клеим ножки для устойчивости.

Регулируемый блок питания готов.

Видеоверсия обзора:

P.S. Можно сделать покупку чуть дешевле при помощи кешбека епн — — специализированная система возврата части потраченных денег на покупки с AliExpress, GearBest, Banggood, ASOS, Ozon. Использовав кешбек епн можно вернуть назад от 7% до 15% от потраченных в этих магазинах денег. Ну, а если есть желание заработать на покупках, тогда тебе сюда -


Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.


Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.


Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC - TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).


Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.

Схема №1.

Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.


Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.


Для удобства работы, сначала полностью открутим всю плату и вынем из корпуса.


На фото разъём питания 220v.

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.


В моём АТ блоке зеленого провода нет, поэтому он запускается сразу при включении в розетку. Если блок АТХ, то в нем должен быть зеленый провод, его необходимо припаять на "общий", а если пожелаете сделать отдельную кнопку включения на корпусе, то тогда просто поставьте выключатель в разрыв этого провода.


Теперь надо посмотреть на сколько вольт стоят выходные большие конденсаторы, если на них написано меньше 30v , то надо заменить их на аналогичные, только с рабочим напряжение не меньше 30 вольт.


На фото - черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).


Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.


Рис. №2 Вариант доработки на примере схемы №1

Расшифровка обозначений.


Делать надо примерно так , находим ножку №1 (где стоит точка на корпусе) микросхемы и изучаем, что к ней присоединено, все цепи необходимо удалить, отсоединить. В зависимости от того как у вас в конкретной модификации платы будут расположены дорожки и впаяны детали, выбирается оптимальный вариант доработки, это может быть выпаивание и приподнятие одной ножки детали (разрывая цепь) или проще будет перерезать дорожку ножом. Определившись с планом действий, начинаем процесс переделки по схеме доработки.




На фото - замена резисторов на нужный номинал.


На фото - приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к "общему", но там уже стоит R=3k подключенный к "общему", это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).






На фото - перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.


Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).


Эти приборы можно приобрести в Китайских интернет магазинах по самой выгодной цене, мой вольтметр мне обошелся с доставкой всего 60 рублей. (Вольтметр: )


Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО - внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.

Из статьи вы узнаете, как изготовить блок питания регулируемый своими руками из доступных материалов. Его можно использовать для питания бытовой аппаратуры, а также для нужд собственной лаборатории. Источник постоянного напряжения может применяться для тестирования таких устройств, как реле-регулятор автомобильного генератора. Ведь при его диагностике возникает необходимость в двух напряжениях - 12 Вольт и свыше 16. А теперь рассмотрите особенности конструкции блока питания.

Трансформатор

Если устройство не планируется использовать для зарядки кислотных аккумуляторов и питания мощной аппаратуры, то нет необходимости в использовании крупных трансформаторов. Достаточно применить модели, мощность у которых не более 50 Вт. Правда, чтобы сделать регулируемый блок питания своими руками, потребуется немного изменить конструкцию преобразователя. Первым делом нужно определиться с тем, какой диапазон изменения напряжения будет на выходе. От этого параметра зависят характеристики трансформатора блока питания.

Допустим, вы выбрали диапазон 0-20 Вольт, значит, отталкиваться нужно от этих значений. Вторичная обмотка должна иметь на выходе переменное напряжение 20-22 Вольта. Следовательно, на трансформаторе оставляете первичную обмотку, поверх нее проводите намотку вторичной. Чтобы вычислить необходимое количество витков, проведите замер напряжения, которое получается с десяти. Десятая часть этого значения - это напряжение, получаемое с одного витка. После того как будет сделана вторичная обмотка, нужно произвести сборку и стяжку сердечника.

Выпрямитель

В качестве выпрямителя можно использовать как сборки, так и отдельные диоды. Перед тем как сделать регулируемый блок питания, проведите подбор всех его компонентов. Если высокая на выходе, то вам потребуется использовать мощные полупроводники. Желательно их устанавливать на алюминиевых радиаторах. Что касается схемы, то предпочтение нужно отдавать только мостовой, так как у нее намного выше КПД, меньше потерь напряжения при выпрямлении Однополупериодную схему использовать не рекомендуется, так как она малоэффективна, на выходе возникает много пульсаций, которые искажают сигнал и являются источником помех для радиоаппаратуры.

Блок стабилизации и регулировки

Для изготовления стабилизатора и разумнее всего использовать микросборку LM317. Дешевый и доступный каждому прибор, который позволит за считаные минуты собрать качественный блок питания регулируемый своими руками. Но его применение требует одной важной детали - эффективного охлаждения. Причем не только пассивного в виде радиаторов. Дело в том, что регулировка и стабилизация напряжения происходят по весьма интересной схеме. Устройство оставляет ровно то напряжение, которое необходимо, а вот излишки, поступающие на его вход, преобразуются в тепло. Поэтому без охлаждения вряд ли микросборка долго проработает.

Взгляните на схему, в ней нет ничего сверхсложного. Всего три вывода у сборки, на третий подается напряжение, со второго снимается, а первый необходим для соединения с минусом блока питания. Но здесь возникает маленькая особенность - если включить между минусом и первым выводом сборки сопротивление, то появляется возможность проводить регулировку напряжения на выходе. Причем блок питания регулируемый своими руками может изменять выходное напряжение как плавно, так и ступенчато. Но первый тип регулировки наиболее удобный, поэтому его используют чаще. Для реализации необходимо включить сопротивление переменное 5 кОм. Кроме того, между первым и вторым выводом сборки требуется установить постоянный резистор сопротивлением около 500 Ом.

Блок контроля силы тока и напряжения

Конечно, чтобы эксплуатация устройства была максимально удобной, необходимо проводить контроль выходных характеристик - напряжения и силы тока. Строится схема регулируемого блока питания таким образом, что амперметр включается в разрыв плюсового провода, а вольтметр - между выходами устройства. Но вопрос в другом - какой тип измерительных приборов использовать? Самый простой вариант - это установить два LED-дисплея, к которым подключить схему вольт- и амперметра, собранную на одном микроконтроллере.

Но в блок питания регулируемый, своими руками изготавливаемый, можно смонтировать пару дешевых китайских мультиметров. Благо их питание можно произвести непосредственно от устройства. Можно, конечно, использовать и стрелочные индикаторы, только в этом случае нужно проводить градуировку шкалы для

Корпус устройства

Изготавливать корпус лучше всего из легкого, но прочного металла. Идеальным вариантом окажется алюминий. Как уже было упомянуто, схема регулируемого блока питания содержит элементы, которые сильно нагреваются. Следовательно, внутри корпуса нужно монтировать радиатор, который для большей эффективности соединить можно с одной из стенок. Желательно наличие принудительного обдува. Для этой цели можно использовать термовыключатель в паре с вентилятором. Устанавливать их необходимо непосредственно на радиаторе охлаждения.

В частные дома и квартиры подается однофазное переменное напряжение 220 В. Оно идеально подходит для работы электрических лампочек накаливания, освещающих жилище. Однако для бытовой техники необходимо питание от постоянного тока и с гораздо меньшим напряжением.

Общие понятия о сети

Всем известно, чтобы заработал телевизор или компьютер необходимо его подключить к электрической розетке. Однако не все знают, что блоки и узлы телевизора не могут включаться напрямую от электросети 220В.

И этому есть две причины:

  • В розетке переменный ток, а компонентам телевизора необходим постоянный;
  • Различные узлы и схемы телевизора для своей работы используют напряжения различной величины. А для этого понадобится несколько линий с различным показателями.

К примеру, для работы радиоприемника необходимо постоянное напряжение 9В. А для компьютера 5В и 12 В.

Для того чтобы получить напряжение необходимой величины существуют блоки питания, которые расположены в корпусе бытовой техники.

Что такое блок питания?

Блоком питания называется электронное устройство , преобразующее переменное напряжение в постоянное. Оно обеспечивает отдельные компоненты, током и напряжением необходимого номинала.

Блок питания – это источник электроэнергии для всех компонентов прибора.

Можно ли обойтись без блока питания? Можно, но не всегда.

Вместо БП можно использовать аккумуляторы или батарейки .

Такой принцип приемлемый в ноутбуках, приемниках или плеерах, где потребляемая мощность не слишком велика.

Для стационарного компьютера или телевизора такое включение нецелесообразно.

В бытовой технике используют два типа:

  • Трансформаторные;
  • Импульсные.

Каждый из этих блоков идеально подходит для тех или иных электронных приборов, согласно заданным техническим характеристикам.

Выделить лучший или худший тип невозможно. Они имеют свои преимущества и недостатки и успешно решают поставленную перед ними задачу.

Трансформаторный БП состоит из понижающего трансформатора с первичной обмоткой под сетевое напряжение. И вторичной обмоткой из расчета необходимого напряжения и тока.

Преобразование переменного напряжения в постоянное осуществляется с помощью выпрямителя. Затем пульсирующее напряжение сглаживается с помощью конденсаторов большой емкости. В схему трансформаторного блока могут входить фильтры от высокочастотных помех, защита от короткого замыкания, стабилизаторы тока и напряжения.

Трансформаторные блоки питания отличаются простотой конструкции, высокой надежностью, доступностью элементной базы и низким уровнем собственных помех. Собираются по простым схемам.

Однако такие БП имеют большой вес и габариты, низкий коэффициент полезного действия.

Импульсные блоки питания основаны на принципе первоначального выпрямления входящего напряжения, с последующим преобразованием в импульсы повышенной частоты.

В импульсных блоках с гальванической развязкой, питание сети подается на трансформатор (с гораздо меньшими размерами, чем в трансформаторном БП).

Если гальваническая развязка от питающей сети не нужна, то импульсы сразу подаются на низкочастотный выходной фильтр.

Благодаря использованию отрицательной обратной связи, импульсные блоки питания выдают стабильные характеристики независимо от колебаний входящего напряжения и величины нагрузки.

Импульсные БП имеют сравнительно небольшие габариты и вес. Они охватывают широкий диапазон входящего напряжения и частоты, отличаются высоким показателем коэффициента полезного действия.

К недостаткам следует отнести высокочастотный уровень помех, вызванный принципом работы импульсных блоков питания.

Как правило, блоки питания уже встроены в аппаратуру , и нет необходимости в этом что-то менять. Однако в отдельных случаях возникает необходимость иметь обособленный блок питания на определенное напряжение.

Например: радиоприемник рассчитан на работу от батареек и не имеет встроенного регулирующего устройства. Резонно использовать отдельно стоящий БП. Это избавит от хлопот, связанных с частой заменой элементов питания.

В случае когда радиолюбитель занимается изготовлением или ремонтом радиоэлектронных устройств, ему приходится работать с аппаратурой, использующей различные напряжения питания. Тогда полезным будет блок питания с регулируемым выходным напряжением.

Конечно, такое устройство можно приобрести в магазине электроники . Однако творческому человеку куда приятнее изготовить такой прибор своими руками. Тем более что в продаже может не оказаться блока питания с необходимыми мастеру характеристиками.

В радиожурналах и на просторах интернета можно найти огромное количество всевозможных схем регулируемых блоков питания.

Но в радиолюбительской практике вполне достаточно иметь простой регулируемый БП от 0 до 12В. Такой прибор под силу изготовить своими руками как опытному, так и начинающему радиолюбителю.

Преимущества блока питания

Схема простого, но надежного блока питания с плавной регулировкой состоит из двух частей:

  • Основная часть (сам блок питания);
  • Транзисторная схема регулятора выходного напряжения.

В основную часть входит:

  • Понижающий трансформатор мощностью до 30Вт. Необходим трансформатор с первичной обмоткой, рассчитанной на переменный ток 220В и вторичной обмоткой с выходным напряжением 15В и током 2-3 ампера;
  • Выпрямитель, собранный на четырех диодах КД202 (или аналогичных) для преобразования постоянного напряжения из переменного;
  • Электролитический конденсатор емкостью не менее 1000 микрофарад. Благодаря своей способности накапливать и отдавать напряжение он выполняет функцию сглаживающего фильтра. Чем выше номинал конденсатора, тем меньше скачки напряжения.

В транзисторную схему входит:

  • Параметрический стабилизатор, состоящий из резистора и стабилитрона. На стабилитроне образуется постоянная величина с малым коэффициентом отклонения;
  • Переменный резистор, осуществляющий плавное изменение выходного напряжения;
  • Эмиттерный повторитель, состоящий из двух транзисторов работающих в режиме усиления тока.

При правильном монтаже, устройство начинает работать сразу, без каких-либо настроек в схеме.

Проверяем в работе

Подключаем вольтметр к выходу БП. Поворачиваем регулятор напряжения на минимум. Показания вольтметра должны равняться нулю. Плавно переводим регулятор в правое положение. Показания вольтметра должны плавно увеличиваться вплоть до максимума +12В.

Параллельно вольтметру включаем нагрузку в пол-ампера . Просадка выходного напряжения должна быть минимальной.

При всей простоте конструкции, БП выдает неплохие характеристики и параметры.

Небольшие доработки своими руками позволят улучшить конструкцию. К примеру, можно установить узел защиты от перегрузок, или установить внутренний вольтметр.

Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания — это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема может быть исполнена в корпусе ТО-220:

или в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт — это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

Сборка в железе

Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)


Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.


А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.


Все это аккуратно упаковываем в корпус и выводим провода.


Ну как вам? ;-)


Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное — 15 Вольт.



Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт



Все работает на ура!

Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.


Аналоги на Алиэкспресс

Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.


Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:


Посмотреть можно по этой ссылке.

Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:




В продолжение темы:
Android

Веб-сервисы в 1СВ данной статье будет рассмотрены вопросы интеграции 1С с уже существующими веб-сервисами и использование самой 1С как веб-сервиса. При этом под веб-сервисами...