История и тенденция развития компьютера. Тенденции развития вычислительной техники

Направления развития компьютерной техники .( тенденции)

На данный момент активно ведутся разработки молекулярных устройств, оптических и квантовых компьютеров, а также ДНК-компьютеров.

В основе молекулярных компьютеров лежат бистабильные молекулы, которые могут находится в двух устойчивых термодинамических состояниях. Каждое такое состояние характеризуется своими химическими и физическими свойствами. Переводить молекулы из одного состояния в другое можно с помощью света, тепла, химических агентов, электрических и магнитных полей. По сути, эти молекулы являются транзисторами размером в несколько нанометров.

Благодаря малым размерам бистабильных молекул можно увеличить количество элементов на единицу площади. Другим достоинством молекул является малое время отклика, которое составляет порядка 10 -15 с. Соединяют функциональные элементы нанотрубки или сопряженные полимеры.

Другой тип компьютеров нового поколения также основан на молекулах, но уже молекулах ДНК . Впервые ДНК–вычисления были проведены в 1994 г. Леонардом Эдлеманом, профессором Университета Южной Калифорнии, для решения задачи торгового агента. В ДНК-компьютерах роль логических вентилей играют подборки цепочек ДНК, которые образуют друг с другом прочные соединения. Для наблюдения состояния всей системы в последовательность внедрялись флуоресцирующие молекулы. При определенных сочетаниях свечения молекул подавляли друг друга, что соответствовало нулю в двоичной системе. Единице же соответствовало усиленное свечение флюоресцентов. Возможно строить последовательности цепочек, в которых выходной сигнал одной цепочки служит входным сигналом другой.

Главное достоинство такого компьютера - работоспособность внутри тела человека, что дает возможность, например, осуществлять подачу лекарства там, где это необходимо. Также такие компьютеры позволят моментально производить идентификацию заболеваний в организме.

Еще два варианта КОМПЬЮТЕРА БУДУЩЕГО - фотонный и квантовый компьютеры. Первый работает на оптических процессах, и все операции в нем выполняются посредством манипуляции оптическим потоком. Преимущества такого компьютера заключаются в свойствах световых потоков. Скорость их распространения выше, чем у электронов, к тому же взаимодействие световых потоков с нелинейными средами не локализовано, а распределено по всей среде, что дает новые степени свободы (по сравнению с электронными системами) в организации связей и создании параллельных архитектур. Производительность оптического процессора может составлять 10 13 -10 15 операций в секунду. На сегодняшний день есть прототипы оптических процессоров, способные выполнять элементарные операции, но полноценных и готовых к производству компьютеров нет.


Квантовый компьютер основан на законах квантовой механики. Для выполнения операций квантовый компьютер использует не биты, а кубиты - квантовые аналоги битов. В отличие от битов, кубиты могут одновременно находится в нескольких состояниях. Такое свойство кубитов позволяет квантовому компьютеру за единицу времени проводить больше вычислений. Область применения квантового компьютера – переборные задачи с большим числом итераций.

КВАНТОВЫЙ КОМПЬЮТЕР - проблема создания

Все прототипы компьютеров будущего – ДНК-компьютеры, молекулярные и фотонные - разные грани одного целого - идеи создания полнофункционального квантового компьютера. Все микрочастицы, будь то кванты, атомы или молекулы - могут быть описаны волновой функцией состояния и подчиняются единым законам квантовой механики. Таким образом, работы над каждым типом компьютеров базируются на одном фундаменте. Но у них есть и общие проблемы. Необходимо научиться объединять частицы в совокупности и работать как с каждой частицей в отдельности, так и с совокупностью в целом. К сожалению, на сегодняшний день технологии не позволяют производить такие манипуляции. К тому же система управления должна поддерживать масштабируемость системы частиц, благодаря которой можно наращивать мощность компьютера. Решение этой проблемы станет очередным прорывом в науке. Над созданием квантового компьютера работают в лабораториях всего мира, в том числе и российских. Например, с 2001 года в Казанском физико-техническом институте начали вести работы в области квантовой памяти и на сегодняшний день исследуют новые твердотельные материалы, пригодные для хранения кубитов. Также решается задача длительности хранения информации, но пока что это время составляет всего несколько миллисекунд. Сергей Моисеев - ведущий научный сотрудник Казанского физико-технического института прокомментировал ситуацию с созданием квантового компьютера так: «Насколько я себе представляю, дело в том, что сложность этой проблемы была не сразу осознана. После того как был проведен первый цикл исследований, были сформулированы проблемы, в том числе и физические, которые предстояло решить. На данный момент создание квантового компьютера напоминает своего рода современный Манхэттенский проект. Цель - создать квантовый компьютер, оперирующий 1000 кубитами, с возможностью его масштабируемости».

Однако развитие квантового компьютера тормозят не только технические проблемы, но и экономические. Долгое время на решение этой задачи выделялось крайне мало средств, особенно в России. Инновационный проект, в случае его успеха, начнет приносить доход лишь спустя длительное время, при этом на этапе старта потребуются крупные капиталовложения. Сейчас, когда преимущества квантового компьютера стали очевидны, начали появляться и инвестиции, но их доля относительно других отраслей по-прежнему невелика.

Что же касается текущей ситуации в мире, то уже есть модель, работающая на двух кубитах. Конечно это не 1000, к которым стремятся ученые, но он уже может найти множители, на которые разлагается число. Потенциал же килокубитного квантового компьютера огромен. Он сможет за минуты просчитывать данные, на которые у нынешних систем уйдут годы, а то и десятилетия. С точки зрения информационной безопасности, как только будет построен квантовый компьютер, все системы защиты данных с открытым ключом рухнут, так как квантовый алгоритм позволяет быстро взломать коды. Самый производительный современный компьютер, если и решит эту задачу, то за несколько лет. Сегодня криптозащита держится только по той причине, что квантовый компьютер находится в самом начале своего развития и 2-3-х кубитов не достаточно для взлома шифров.

Предвидя такое развитие событий, компании задумываются о квантовой криптографии, против которой компьютер нового поколения будет бессилен. Особенность квантовой криптозащиты в том, что при попытке «подслушать» информацию она разрушается по закону неопределенности Гейзенберга. Таким образом, при попытке получить доступ к зашифрованному потоку, информация в нем будет утеряна. Однако не стоит считать неуязвимость квантовой криптозащиты абсолютной, как и в любой системе, в ней есть свои слабые места.

Специалисты утверждают, что ближайшая реализация квантового компьютера - система finger printing в научном мире известная, как метод характеристических признаков. Она будет содержать примерно 20-30 кубитов и предназначена для выделения «струны» – последовательности данных из базы данных, содержащей небольшой бит информации с некими характерными признаками. И если сравнить эту «струну» со «струной» из другой базы, то с определенной долей вероятности можно определить, одинаковые эти базы данных или нет. В течение нескольких ближайших лет фирма HP собирается представить такой компьютер, работающий на квантовых точках. Нити с определенной вероятностью довольно точно описывают исходную базу. И если две выбранные последовательности признаков совпадают, то можно предположить, что и исходные базы данных одинаковы. Например, при сканировании сетчатки глаза в системе контроля доступа можно снимать информацию не обо всей сетчатке, а только определенные параметры. Совокупность таких параметров и будет «струной». Квантовый компьютер не будет конкурентом нынешним, скорее, он предназначен для решения задач с огромным количеством исходной информации и большим числом переменных. Такие задачи характерны для систем криптографии и безопасной передачи данных, биологии и медицины, моделирования квантовых систем, оптимизации различных процессов.

Первые электронные вычислительные машины (ЭВМ) появились немногим более 50 лет назад. За это время микроэлектроника, вычислительная техника и вся индустрия информатики стали одними из основных составляющих мирового научно-технического прогресса. Влияние вычислительной техники на все сферы деятельности человека продолжает расширяться. В настоящее время ЭВМ используются не только для выполнения сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.д. Это объясняется тем, что ЭВМ способны обрабатывать любые виды информации: числовую, текстовую, табличную, графическую, звуковую, видеоинформацию.

Первая электронная вычислительная машина ЕЫ1ЛС была построена в 1946 г. в рамках одного научно-исследовательского проекта, финансируемого министерством обороны США. Годом ранее Дж. фон Нейман издал статью, в которой были изложены основные принципы построения компьютеров. В основу проекта был положен макет вычислителя, разработанный американцем болгарского происхождения Дж. Атанасовым, занимавшимся крупномасштабными вычислениями. В осуществлении проекта принимали активное участие такие крупные ученые, как К. Шеннон, Н. Виннер, Дж. фон Нейман и др. С этого момента началась эра вычислительной техники. С отставанием в 10-15 лет стала развиваться и отечественная вычислительная техника.

Математические основы автоматических вычислений к этому времени были уже разработаны (Г. Лейбниц, Дж. Буль, Л.Тьюринг и др.), но появление компьютеров стало возможным только благодаря развитию электронной техники. Многократные попытки создания разного рода автоматических вычислительных устройств (от простейших счет до механических и электромеханических вычислителей) не позволяли построить надежные и экономически эффективные машины.

Появление электронных схем сделало возможным построение электронных вычислительных машин.

Электронная вычислительная машина, или компьютер - это комплекс аппаратных и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей (рис. 1).

Под пользователем понимают человека, в интересах которого проводится обработка данных. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы. Как правило, время подготовки задач во много раз превышает время их решения.

Компьютеры являются универсальными техническими средствами автоматизации вычислительных работ, то есть они способны решать любые задачи, связанные с преобразованием информации. Однако подготовка задач к решению на ЭВМ была и остается до настоящего времени достаточно трудоемким процессом, требующим от пользователей во многих случаях специальных знаний и навыков.

Для снижения трудоемкости подготовки задач к решению, более эффективного использования отдельных технических, программных средств и ЭВМ в целом, а также облегчения их эксплуатации каждая ЭВМ имеет специальный комплекс программных средств. Обычно аппаратные и программные средства взаимосвязаны и объединяются в одну структуру.

Структура представляет собой совокупность элементов и их связей. В зависимости от контекста различают структуры технических, программных, аппаратно-программных и информационных средств.


Часть программных средств обеспечивает взаимодействие пользователей с ЭВМ и является своеобразным «посредником» между ними. Она получила название операционная система и является ядром программного обеспечения ЭВМ.

Под программным обеспечением будем понимать комплекс программных средств регулярного применения, предназначенный для создания необходимого сервиса для работы пользователей.

Программное обеспечение (ПО) отдельных ЭВМ и вычислительных систем (ВС) может сильно различаться составом используемых программ, который определяется классом используемой вычислительной техники, режимами ее применения, содержанием вычислительных работ пользователей и т.п. Развитие ПО современных ЭВМ и ВС в значительной степени носит эволюционный и эмпирический характер, но можно выделить закономерности в его построении.

Рассмотрим основные вехи и тенденции развития компьютеров, их аппаратных и программных средств (табл. 1).

Таблица 1

Автоматизация подготовки и решения задач на ЭВМ


В общем случае процесс подготовки и решения задач на ЭВМ предусматривает обязательное выполнение следующей последовательности этапов:

1) формулировка проблемы и математическая постановка задачи;

2) выбор метода и разработка алгоритма решения;

3) программирование (запись алгоритма) с использованием некоторого алгоритмического языка;

4) планирование и организация вычислительного процесса - порядка и последовательности использование ресурсов ЭВМ и ВС;

5) формирование «машинной программы», то есть программы, которую непосредственно будет выполнять ЭВМ;

6) собственно решение задачи - выполнение вычислений по готовой программе.

По мере развития вычислительной техники автоматизация этих этапов идет снизу

На пути развития электронной вычислительной техники можно выделить четыре поколения ЭВМ, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ЭВМ со стороны пользователей. Смене поколений сопутствовало изменение основных технико-эксплуатационных и техникоэкономических показателей ЭВМ и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из основных тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь операторов с машинами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на ЭВМ в различных сферах применения.

Возможности улучшения технико-эксплуатационных показателей ЭВМ в значительной степени зависят от элементов, используемых для построения их электронных схем. Поэтому при рассмотрении этапов развития ЭВМ каждое поколение в первую очередь, как правило, характеризуется используемой элементной базой.

Основным активным элементом компьютеров первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры - это обычные резисторы, конденсаторы, трансформаторы. Для построения оперативной памяти уже с середи

Принципы построения компьютера

ны 50-х годов начали применяться специально разработанные для этой цели элементы - ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройства ввода-вывода сначала использовалась стандартная телеграфная аппаратура (телетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально были разработаны электромеханические запоминающие устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Компьютеры этого поколения имели значительные размеры, потребляли большую мощность. Быстродействие этих машин составляло от нескольких сотен до нескольких тысяч операций в секунду, емкость памяти - несколько тысяч машинных слов, надежность исчислялась несколькими часами работы.

В этих ЭВМ автоматизации подлежал только шестой этап, так как практически отсутствовало какое-либо программное обеспечение. Все пять предыдущих этапов пользователь должен был готовить вручную самостоятельно, вплоть до получения машинных кодов программ. Трудоемкий и рутинный характер этих работ был источником большого количества ошибок в заданиях. Поэтому в ЭВМ следующих поколений появились сначала элементы, а затем целые системы, облегчающие процесс подготовки задач к решению.

На смену ламп пришли транзисторы в машинах второго поколения (начало 60х годов). Компьютеры стали обладать большими быстродействием, емкостью оперативной памяти, надежностью. Все основные характеристики возросли на 1-2 порядка. Существенно были уменьшены размеры, масса и потребляемая мощность. Большим достижением явилось применение печатного монтажа. Повысилась надежность электромеханических устройств ввода-вывода, удельный вес которых увеличился. Машины второго поколения стали обладать большими вычислительными и логическими возможностями.

Особенность машин второго поколения - их дифференциация по применению. Появились компьютеры для решения научно-технических и экономических задач, для управления производственными процессами и различными объектами (управляющие машины).

Наряду с техническим совершенствованием ЭВМ развиваются методы и приемы программирования вычислений, высшей ступенью которых является появление систем автоматизации программирования, значительно облегчающих труд математиков- программистов.

Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению. С появлением алгоритмических языков резко сократились штаты программистов, поскольку составление программ на этих языках стало под силу самим пользователям.

Широкое применение алгоритмических языков (Автокоды, Алгол, Фортран и др.) и соответствующих им трансляторов, позволяющих автоматически формировать машинные программы по их описанию на алгоритмическом языке, привело к созданию библиотек стандартных программ, что позволило строить машинные программы блоками, используя накопленный и приобретенный программистами опыт. Новые программные средства здесь еще не объединялись в отдельные пакеты под общим управлением. Отметим, что временные границы появления всех этих нововведений достаточно размыты. Обычно их истоки можно обнаружить уже в недрах ЭВМ предыдущих поколений.

Третье поколение ЭВМ (в конце 60-х - начале 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический и функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось еще более

улучшить технические и эксплуатационные характеристики машин. Вычислительная техника стала иметь широкую номенклатуру устройств, позволяющих строить разнообразные системы обработки данных, ориентированные на различные применения. Они охватывали широкий диапазон по производительности, чему способствовало также повсеместное применение многослойного печатного монтажа.

В компьютерах третьего поколения значительно расширился набор различных электромеханических устройств ввода и вывода информации. Развитие этих устройств носит эволюционный характер: их характеристики улучшаются гораздо медленнее, чем характеристики электронного оборудования.

Отличительной особенностью развития программных средств этого поколения является появление ярко выраженного программного обеспечения и развитие его ядра - операционных систем, отвечающих за организацию и управление вычислительным процессом. Именно здесь понятие «ЭВМ» все чаще стало заменяться понятием «вычислительная система», что в большей степени отражало усложнение как аппаратурной, так и программной частей ЭВМ. Стоимость программного обеспечения стала расти, и в настоящее время намного опережает стоимость аппаратуры (рис. 2).

Рис. 2. Динамика изменения стоимости аппаратурных и программных средств


Операционная система (ОС) планирует последовательность распределения и использования ресурсов вычислительной системы, а также обеспечивает их согласованную работу. Под ресурсами обычно понимают те средства, которые используются для вычислений: машинное время отдельных процессоров или ЭВМ, входящих в систему; объемы оперативной и внешней памяти; отдельные устройства, информационные массивы; библиотеки программ; отдельные программы как общего, так и специального применения и т.п. Интересно, что наиболее употребительные функции ОС в части обработки внештатных ситуаций (защита программ от взаимных помех, системы прерываний и приоритетов, служба времени, сопряжение с каналами связи и т.д.) были полностью или частично реализованы аппаратурно. Одновременно были реализованы более сложные режимы работы: коллективный доступ к ресурсам, мультипрограммные режимы. Часть этих решений стала своеобразным стандартом и начала использоваться повсеместно в ЭВМ различных классов.

В машинах третьего поколения существенно расширены возможности по обеспечению непосредственного доступа к ним со стороны абонентов, находящихся на различных, а том числе и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с машиной достигается за счет развитой сети абонентских пунктов, связанных с ЭВМ информационными каналами связи, и соответствующего программного обеспечения.

Например, в режиме разделения времени многим абонентам предоставляется возможность одновременного, непосредственного и оперативного доступа к ЭВМ. Вследствие большого различия инерционности человека и машины у каждого из одновременно работающих абонентов складывается впечатление, будто ему одному предоставлено машинное время.

Здесь еще в большей степени проявляется тенденция к унификации ЭВМ, созданию машин, представляющих собой единую систему. Ярким примером этой тенденции служит отечественная программа создания и развития Единой системы электронных вычислительных машин (ЕС ЭВМ).

ЕС ЭВМ представляла собой семейство (ряд) программно-совместимых машин, построенных на единой элементной базе, на единой конструктивно-технологической основе, с единой структурой, единой системой программного обеспечения и единым унифицированным набором внешних устройств.

Промышленный выпуск первых моделей ЕС ЭВМ был начат в 1972 г., при их создании были использованы все современные достижения в области электронной вычислительной техники, технологии и конструирования ЭВМ, в области построения систем программного обеспечения. Объединение знаний и производственных мощностей стран- разработчиков позволило в довольно сжатые сроки решить сложную комплексную научно-техническую проблему. ЕС ЭВМ представляла собой непрерывно развивающуюся систему, в которой улучшались технико-эксплуатационные показатели машин, совершенствовалось периферийное оборудование и расширялась его номенклатура.

Для машин четвертого поколения (80-е годы) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, усложнению ее функций, повышению надежности и быстродействия, снижению стоимости. Это в свою очередь оказало существенное воздействие на логическую структуру ЭВМ и ее программное обеспечение. Более тесной стала связь структуры машины и ее программного обеспечения, особенно операционной системы.

В четвертом поколении с появлением в США микропроцессоров (1971 г.) возник новый класс вычислительных машин - микроЭВМ, на смену которым пришли персональные компьютеры (ПК, начало 80-х годов). В этом классе ЭВМ наряду с БИС стали использоваться сверхбольшие интегральные схемы (СБИС) 32-, а затем 64-разрядности.

Появление ПК - наиболее яркое событие в области вычислительной техники, до последнего времени самый динамично развивающийся сектор отрасли. С их внедрением решение задач информатизации общества было поставлено на реальную основу.

Основная цель использования ПК - формализация профессиональных знаний. Здесь, в первую очередь, автоматизируется рутинная часть работ (сбор, накопление, хранение и обработка данных), которая занимает более 75% рабочего времени специали- стов-прикладников. Применение ПК позволило сделать труд специалистов творческим, интересным, эффективным. В настоящее время ПК используются повсеместно, во всех сферах деятельности людей. Новые сферы применения изменили и характер вычислительных работ. Так, инженерно-технические расчеты составляют не более 9-15%, в большей степени ПК теперь используются для автоматизации управления сбытом, закупками, управления запасами, производством, для выполнения финансово-экономических расчетов, делопроизводства, игровых задач и т.п.

Применение ПК позволило использовать новые информационные технологии и создавать системы распределенной обработки данных. Высшей стадией систем распределенной обработки данных являются компьютерные (вычислительные) сети различных уровней - от локальных до глобальных.

В компьютерах этого поколения продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества). Следует указать на заметное повышение уровня «интеллектуальности» систем, создаваемых на их основе. Программное обеспечение этих машин создает «дружественную» среду общения человека и компьютера. Оно, с одной стороны, управляет процессом обработки информации, а с другой, создает необходимый сервис для пользователя, снижая трудоемкость его рутинной работы и предоставляя ему возможность больше внимания уделять творчеству.

Подобные тенденции будут сохраняться и в ЭВМ следующих поколений. Так, по мнению исследователей , машины следующего столетия будут иметь встроенный в них «искусственный интеллект», что позволит пользователям обращаться к машинам (системам) на естественном языке, вводить и обрабатывать тексты, документы, иллюстрации, создавать системы обработки знаний и т.д. Все это приводит к необходимости усложнения аппаратной части компьютеров, появлению вычислительных систем на их основе, а также к разработке сложного многоэшелонного иерархического программного обеспечения систем обработки данных.

  • технологический процесс с меньшими проектными нормами ; увеличение числа слоев металлизации; более совершенная схемотехника меньшей каскадности и с более совершенными транзисторами, а также более плотная компоновка функциональных блоков кристалла.

    Так, все производители микропроцессоров перешли на технологию КМОП, хотя Intel, например, использовала БиКМОП для первых представителей семейства Pentium. Известно, что биполярные схемы и КМОП на высоких частотах имеют примерно одинаковые показатели тепловыделения, но КМОП-схемы более технологичны, что и определило их преобладание в микропроцессорах.

    Уменьшение размеров транзисторов, сопровождаемое снижением напряжения питания с 5 В до 2,5-3 В и ниже, увеличивает быстродействие и уменьшает выделяемую тепловую энергию. Все производители микропроцессоров перешли с проектных норм 0,35-0,25 мкм на 0,18 мкм и 0,12 мкм и стремятся использовать уникальную 0,07 мкм технологию (табл.17.1).

    Таблица 17.1.
    Год производства 2005 2006 2007 2010 2013 2016
    DRAM , нм 80 70 65 45 32 32
    МП, нм 80 70 65 45 32 32
    Uпит, В 0,9 0,9 0,7 0,6 0,5 0,4
    Р, Вт 170 180 190 218 251 288

    При минимальном размере деталей внутренней структуры интегральных схем 0,1-0,2 мкм достигается оптимум, ниже которого все характеристики транзистора быстро ухудшаются. Практически все свойства твердого тела, включая его электропроводность, резко изменяются и "сопротивляются" дальнейшей миниатюризации, возрастание сопротивления связей происходит экспоненциально. Потери даже на кратчайших линиях внутренних соединений такого размера "съедают" до 90% сигнала по уровню и мощности.

    При этом начинают проявляться эффекты квантовой связи, в результате чего твердотельное устройство становится системой, действие которой основано на коллективных электронных процессах. Проектная норма 0,05-0,1 мкм (50-100 нм) - это нижний предел твердотельной микроэлектроники, основанной на классических принципах синтеза схем.

    Уменьшение длины межсоединений актуально для повышения тактовой частоты работы, так как существенную долю длительности такта занимает время прохождения сигналов по проводникам внутри кристалла. Например, в Alpha 21264 предприняты специальные меры по кластеризации обработки, призванные локализовать взаимодействующие элементы микропроцессора.

    Проблема уменьшения длины межсоединений на кристалле при использовании традиционных технологий решается путем увеличения числа слоев металлизации. Так, Cyrix при сохранении 0,6 мкм КМОП технологии за счет увеличения с 3 до 5 слоев металлизации сократила размер кристалла на 40% и уменьшила выделяемую мощность , исключив существовавший ранее перегрев кристаллов.

    Одним из шагов в направлении уменьшения числа слоев металлизации и уменьшения длины межсоединений стала технология, использующая медные проводники для межсоединений внутри кристалла, разработанная фирмой IBM и используемая в настоящее время и другими фирмами-изготовителями СБИС.

    Впервые рубеж тактовой частоты в 500 МГц перешагнули микропроцессоры фирмы DEC , которая уже в конце 1996 г. поставляла Alpha 21164 с тактовой частотой 500 МГц, в 1997 г. - Alpha 21264 с тактовой частотой 600 МГц, а в 1998 г. - Alpha 21264 с тактовой частотой 750 МГц и выше. В настоящее время ряд фирм выпускает процессоры для персональных компьютеров с тактовой частотой свыше 4 ГГц.

    2. Увеличение объема и пропускной способности подсистемы памяти.

    Возможные решения по увеличению пропускной способности подсистемы памяти включают создание кэш -памяти одного или нескольких уровней, а также увеличение пропускной способности интерфейсов между процессором и кэш -памятью и конфликтующей с этим увеличением пропускной способности между процессором и основной памятью. Совершенствование интерфейсов реализуется как увеличением пропускной способности шин (путем увеличения частоты работы шины и/или ее ширины), так и введением дополнительных шин, расшивающих конфликты между процессором, кэш -памятью и основной памятью. В последнем случае одна шина работает на частоте процессора с кэш -памятью, а вторая - на частоте работы основной памяти. При этом частоты работы второй шины, например, равны 66, 66, 166 МГц для микропроцессоров Pentium Pro -200, Power PC 604E-225, Alpha 21164-500, работающих на тактовых частотах 300, 225, 500 МГц, соответственно. При ширине шин 64, 64, 128 разрядов это обеспечивает пропускную способность интерфейса с основной памятью 512, 512, 2560 Мбайт/с, соответственно.

    Общая тенденция увеличения размеров кэш -памяти реализуется по -разному:

    • внешние кэш-памяти данных и команд с двухтактовым временем доступа объемом от 256 Кбайт до 2 Мбайт со временем доступа 2 такта в HP PA-8000;
    • отдельный кристалл кэш-памяти второго уровня, размещенный в одном корпусе в Pentium Pro ;
    • размещение отдельных кэш-памяти команд и кэш-памяти данных первого уровня объемом по 8 Кбайт и общей для команд и данных кэш-памяти второго уровня объемом 96 Кбайт в Alpha 21164.

    Наиболее используемое решение состоит в размещении на кристалле отдельных кэш -памятей первого уровня для данных и команд с возможным созданием внекристальной кэш -памяти второго уровня. Например, в Pentium II использованы внутрикристальные кэш -памяти первого уровня для команд и данных по 16 Кбайт каждая, работающие на тактовой частоте процессора, и внекристальный кэш второго уровня, работающий на половинной тактовой частоте .

    3. Увеличение количества параллельно работающих исполнительных устройств.

    Каждое семейство микропроцессоров демонстрирует в следующем поколении увеличение числа функциональных исполнительных устройств и улучшение их характеристик, как временных (сокращение числа ступеней конвейера и уменьшение длительности каждой ступени), так и функциональных (введение ММХ-расширений системы команд и т.д.).

    В настоящее время процессоры могут выполнять до 6 операций за такт. Однако число операций с плавающей точкой в такте ограничено двумя для R10000 и Alpha 21164, а 4 операции за такт делает HP PA-8500.

    Для того чтобы загрузить функциональные исполнительные устройства, используются переименование регистров и предсказание переходов, устраняющие зависимости между командами по данным и управлению, буферы динамической переадресации.

    Широко используются архитектуры с длинным командным словом - VLIW . Так, архитектура IA-64 , развиваемая Intel и HP, использует объединение нескольких инструкций в одной команде ( EPIC ). Это позволяет упростить процессор и ускорить выполнение команд. Процессоры с архитектурой IA-64 могут адресоваться к 4 Гбайтам памяти и работать с 64-разрядными данными. Архитектура IA-64 используется в микропроцессоре Merced , обеспечивая производительность до 6 Гфлоп при операциях с одинарной точностью и до 3 Гфлоп - с повышенной точностью на частоте 1ГГц.

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

    ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    Кафедра ТПО

    РЕФЕРАТ

    По Информатике и вычислительной технике

    «Тенденции и перспективы развития информатики и вычислительной техники»


    Введение

    1. Тенденции развития вычислительных систем

    2. Тенденции развития информатики

    Заключение

    Список литературы


    Введение

    Появление и развитие электронной вычислительной техники во второй половине ХХ века оказало и продолжает оказывать огромное влияние на мировое общество и мировую экономику. Значимость информационных технологий на основе компьютеризации носит глобальный характер. Их воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей.

    В наше время жизнь каждого отдельного человека и всего социума в целом тесно связана с компьютером. Электронно-вычислительная техника всё шире входит во все сферы нашей жизни. Компьютер стал привычным не только в производственных целях и научных лабораториях, но и в студенческих аудиториях и школьных классах. Непрерывно растёт число специалистов, работающих с персональным компьютером, который становится их основным рабочим инструментом. Ни экономические, ни научные достижения невозможны теперь без быстрой и четкой информационной связи и без специального обученного персонала.

    В продолжение всей истории вычислительной техники дискутируется проблема специализации средств вычислительной техники (СВТ) и вычислительных систем (ВС) в постановке: альтернатива это или дополнение к направлению развития универсальных компьютерных систем. Станет ли «универсальная» ВС «специализированной», если в ее состав будет включен, например, специализированный процессор? Вместе с тем, любая конкретная универсальная ВС ограничена сферой своего целевого назначения и вследствие этого приобретает свойства специализированности (по крайней мере, на уровне прикладного программного обеспечения).

    Академик В.М. Глушков подчеркивал: «… требования увеличения эффективности оборудования, а также упрощения программирования и облегчения общения с человеком ведут к специализации процессоров, хотя каждый из таких специализированных процессоров будет оставаться алгоритмически универсальным и потому в принципе пригодным и для других применений»

    Кроме того, успешная реализация ряда современных проектов, связанных с разработкой и производством современных военных систем, позволяет говорить о серьезном прорыве в традиционных подходах к формированию технической и бизнес-политики создания компьютерных систем. Основу этого прорыва составляет то, что для реализации военных проектов широко использованы готовые аппаратные и программные технологии открытого типа, ранее широко апробированные и стандартизированные на рынке общепромышленных гражданских приложений. Это так называемые COTS-технологии (Commercial Off-The-Shelf – «готовые к использованию»). Нормативная база COTS-технологий развивается и поддерживается как в рамках международных (IEC/МЭК, ISO) и национальных (ANSI, DIN, IEEE, ГОСТ) организаций по стандартизации, так и в рамках крупных профессиональных консорциумов (ARINC, PCISIG, VITA, PICMG, Group IPC и т.д.). Стандартизация ведется совместными усилиями большого числа конкурирующих компаний: Motorola, HP, IBM, Sun, производящих совместимую серийную технику.

    развитие вычислительная система информатика


    Тенденции развития вычислительных систем

    Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

    Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам – вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

    Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы – вычислительные сети – ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

    Специалисты считают, что в первой четверти XXI в. в цивилизованных странах произойдет смена основной информационной среды. Удельные объемы информации, получаемой обществом по традиционным информационным каналам (радио, телевидение, печать) станут катастрофически малы по сравнению с объемами получаемой информации посредством компьютерных сетей.

    Прогнозируется дальнейший рост массового производства и распространения персональных ЭВМ, встраиваемых микропроцессоров, создания глобальных и региональных сетей обмена информацией. Примером здесь является развитие сети Internet.

    Уже сегодня пользователям глобальной сети Internet стала доступной практически любая находящаяся в хранилищах знаний этой сети не конфиденциальная информация.

    Электронная почта Internet позволяет получить почтовое отправление из любой точки Земного шара (где есть терминалы этой сети) через 5 с, а не через неделю или месяц, как это имеет место при использовании обычной почты.

    В Массачусетском университете (США) создана электронная книга, куда можно записывать любую информацию из сети; читать эту книгу можно, отключившись от сети, автономно, в любом месте. Сама книга в твердом переплете, содержит тонкие жидкокристаллические индикаторы – страницы с бумагообразной синтетической поверхностью и высоким качеством "печати".

    При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры – суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, – нейрокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП – транспьютеры.

    Транспьютер – микропроцессор сети со встроенными средствами связи. Например, транспьютер IMS T 800 при тактовой частоте 30 МГц имеет быстродействие 15 млн. оп/с (операций в сек.), а транспьютер Intel WARP при тактовой частоте 20 МГц – 20 млн. оп/с (оба транспьютера 32-разрядные).

    Ближайшие прогнозы по созданию отдельных устройств ЭВМ:

    1. Микропроцессоры с быстродействием 1000 MIPS (MIPS - скорость операций в единицу времени) и встроенной памятью 16 Мбайт.

    2. Встроенные сетевые и видеоинтерфейсы;

    3. Плоские (толщиной 3-5 мм) крупноформатные дисплеи с разрешающей способностью 1000x800 пикселей и более;

    4. Портативные, размером со спичечный коробок, магнитные диски емкостью более 100 Гбайт. Терабайтные дисковые массивы на их основе сделают практически ненужным стирание старой информации.

    Повсеместное использование мультиканальных широкополосных радио-, волоконно-оптических, а в пределах прямой видимости и инфракрасных каналов обмена информацией между компьютерами обеспечит практически неограниченную пропускную способность (трансфер до сотен миллионов байт в секунду).

    Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

    Этому уже сейчас способствуют:

    1. Зарождающиеся технологии медиа-серверов, способных собирать и хранить огромнейшие объемы информации и выдавать ее в реальном времени по множеству одновременно приходящих запросов;

    2. Системы сверхскоростных широкополосных информационных магистралей, связывающие воедино все потребительские системы.

    Названные ожидаемые технологии и характеристики устройств ЭВМ совместно с их общей миниатюризацией могут сделать всевозможные вычислительные средства и системы вездесущими, привычными, обыденными, естественно насыщающими нашу повседневную жизнь.

    Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

    Курсовая работа по теме:

    ЭТАПЫ И ТЕНДЕНЦИИ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ


    Введение

    Глава 1. Информатизация общества

    1.2 Информационная культура человека

    Глава 2. Поколения ЭВМ. Классификация современных компьютеров по функциональным возможностям

    2.1 Краткая история докомпьютерной эпохи

    2.2 Открытия, предшествующие созданию компьютеров

    2.3 Поколения ЭВМ

    2.3.1 ЭВМ первого поколения

    2.3.2 ЭВМ второго поколения

    2.3.3 ЭВМ третьего поколения

    2.3.4 ЭВМ четвертого поколения

    2.3.5 ЭВМ пятого поколения

    2.4 Тенденции развития вычислительной техники. Компьютер будущего

    Глава 3. Информационные технологии

    3.1 Информационные технологии. Определение, цель и основные свойства

    3.2 Развитие информационных технологий

    Заключение

    Литература


    Введение

    На протяжении всей истории человечество овладело сначала веществом, затем энергией и, наконец, информацией. На заре цивилизации человеку хватало элементарных знаний и первобытных навыков, но постепенно объем информации увеличивался, и люди почувствовали недостаток индивидуальных знаний. Потребовалось научиться обобщать знания и опыт, которые способствовали правильной обработке информации и принятию необходимых решений, иными словами, необходимо было научиться целенаправленно работать с информацией и использовать для ее получения, обработки и передачи компьютерную информационную технологию. Усложнение индустриального производства, социальной, экономической и политической жизни, изменение динамики процессов во всех сферах деятельности человека привели, с одной стороны, к росту потребностей в знаниях, а с другой - к созданию новых средств и способов удовлетворения этих потребностей. В современном обществе к общей культуре человека добавилась еще одна категория – информационная.

    Мир сейчас находится на пороге информационного общества. Началом такого перехода стало внедрение в различные сферы деятельности человека современных средств обработки и передачи информации. Переход от индустриального общества к информационному осуществляется благодаря информатизации общества – процессу, при котором создаются условия, удовлетворяющие потребности любого человека в получении необходимой информации. Основную роль, в информационном обществе, будет играть система распространения, хранения и обработки информации, образуя информационную среду, которая может обеспечить любому человеку доступ ко всей информации.

    Новые технологии являются главной движущей силой в дополнение к существующим силам мирового рынка. Всего несколько ключевых компонентов - микропроцессоры, локальные сети, робототехника, специализированные АРМ, датчики, программируемые контроллеры - превратили в реальность концепцию автоматизированного предприятия.

    В XXI веке образованный человек – это человек, хорошо владеющий информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства. Уже сейчас при приеме на работу соискателям предъявляются требования по владению персональным компьютером и основными прикладными программами. Можно сделать вывод, что в современных условиях информационные технологии становятся эффективным инструментом совершенствования управления предприятием, особенно в таких областях управленческой деятельности, как стратегическое управление, управление качеством продукции и услуг, маркетинг, делопроизводство, управление персоналом.

    Цель работы: изучив доступные источники информации, выяснить основные этапы и тенденции в развитии вычислительной техники и информационных технологий. Знание истории всегда помогает понимать новое, тем более при современном темпе развития информационных технологий. Для решения поставленной цели необходимо:

    1. кратко изучить историю докомпьтерной эпохи и познакомиться с открытиями предшествующими появлению ЭВМ;

    2. рассмотреть поколения ЭВМ и их отличительные особенности;

    3. познакомится с основными тенденциями в развитии компьютерной техники;

    4. выяснить смысл понятия «информационные технологии»;

    5. кратко рассмотреть этапы развития информационного общества, его информатизацию

    6. выяснить основные тенденции в развитии информационных технологий.


    Глава 1. Информатизация общества

    1.1 Этапы развития информационного общества. Его информатизация

    В развитии человечества существуют четыре этапа, названные информационными революциями, которые внесли изменения в его развитие.

    Первая – связана с изобретением письменности. Это обусловило качественный гигантский и количественный скачек в развитии общества. Знания стало возможно накапливать и передавать последующим поколениям, т.е. появились средства и методы накопления информации. В некоторых источниках считается, что содержание первой информационной революции составляет распространение и внедрение в деятельность и сознание человека языка.

    Вторая (середина XVI века) – изобретение книгопечатания. Это дало в руки человечеству новый способ хранения информации, а так же сделало более доступным культурные ценности.

    Третья (конец XIX века) – изобретение электричества. Появились телеграф, телефон и радио, позволяющие быстро передавать и накапливать информацию в любом объеме. Появились средства информационных коммуникаций.

    Четвертая (70-е годы ХХ века) – изобретение микропроцессорной технологии и персональных компьютеров. Толчком к этой революции послужило создание в середине 40-х годов ЭВМ. Эта последняя революция дала толчок человеческой цивилизации для переходы от индустриального к информационному обществу- обществу, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формой – знанием. Началом этого послужило внедрение в различные сферы деятельности человека современных средств обработки и передачи информации – этот процесс называется информатизацией.

    Информатизация общества – процесс, при котором создаются условия, удовлетворяющие потребностям любого человека в получении необходимой информации (по закону РФ «Об информации, информатизации и защите информации» от 25 января, 1995 года).

    До недавнего времени вместо термина «информатизация» использовался «компьютеризация», который означал развитие и внедрение компьютеров. Но информатизация общества является более широким понятием, так как сегодня главным являются не столько технические средства, сколько сущности и цели социально-технического процесса в целом. Компьютеры являются только частью процесса информатизации общества – ее базовой технической составляющей.

    Основные черты информационного общества:

    1. Увеличение объема информации приводит к тому, что человек сам не способен ее обработать, для этого ему необходимо использовать специальные технические устройства – компьютеры.

    2. Движущей силой общества станет производство информационного продукта. Во второй половине ХХ века появился новый социальный слой «белые воротнички» - люди, не производящие непосредственно материальные ценности, а занятые обработкой информации.

    3. Увеличится доля умственного труда, так как продуктом производства в информационного общества станут знания и интеллект.

    4. Произойдет переоценка ценностей, уклада жизни и изменится культурный досуг. Уже сейчас компьютерные игры занимают большую часть свободного времени человека. Сейчас все большее распространение получают сетевые игры. Растет время проведенной в Интернете, здесь можно «путешествовать» по образовательным сайтам, виртуальным музеям, читать книги, общаться.

    5. Будет развиваться компьютерная техника, компьютерные сети, информационные технологии.

    6. Появятся новые электронные компьютеризированные бытовые приборы. Предполагается, что дома будут оснащаться единым информационным кабелем, который возьмет на себя все информационные связи, включая каналы кабельного телевидения и выход в Интернет. Специальный электронный блок будет контролировать всю бытовую технику.

    7. Производством энергии и материального продукта будут заниматься машины, а человек главным образом обработкой информации.

    8. В сфере образования будет создана система непрерывного образования.

    9. Появится, и будет развиваться рынок информационных услуг.

    Информационное общество кроме всех перечисленных выше благ несет для человека и множество этических и правовых проблем. К некоторым из них можно отнести:

    - «информационные войны»;

    Информационное неравенство;

    Психологические проблемы связанные с виртуальной реальностью;

    Сложность выбора качественной и достоверной информации из большого объема

    В связи с переходом к информационному обществу к общей культуре человека добавилась – информационная культура. Которая характеризует умение человека целенаправленно работать с информацией и использовать ее для получения, обработки и передачи компьютерную информационную технологию, современные технические средства и методы.



  • В продолжение темы:
    Android

    Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...