Полукружные каналы, физиология. Что значит "полукружные каналы"

Структура и функции полукружных каналов

Рецепторы - это вторичные сенсорные клетки: они не обладают собственными отростками, а иннервируются афферентными волокнами нейронов вестибулярного ганглия , входящими в состав вестибулярного нерва . На рецепторных клетках оканчиваются также эфферентные нервные волокна . Афферентные волокна передают информацию об уровне возбуждения периферического органа в центральную нервную систему . Эфферентные волокна изменяют чувствительность рецепторов, однако значение этого влияния до сих пор остается не совсем ясным.

Поскольку реснички погружены в желеобразную массу (купулу), при движении последней они отклоняются (изгибаются). Сдвиг пучка ресничек и является адекватным стимулом для рецептора. Когда такой сдвиг направлен в сторону киноцилии, активируется соответствующее афферентное нервное волокно, вызывая возбуждение рецепторов. Если пучок движется в противоположном направлении, частота импульсов снижается. Сдвиг в перпендикулярном направлении не вызывает изменения активности. Информация передается из рецепторной клетки в окончание афферентного нерва посредством рецепторного потенциала и не идентифицированного пока медиатора.

Структура и функции отолитового аппарата

С каждой стороны головы имеются по две макулы (статолитовые органы) – макула утрикулуса (круглый мешочек) и макуса саккулуса (овальный мешочек). Макулы постоянно подвергаются действию силы тяжести. Когда голова находится в нормальном положении, макула утрикулуса расположена почти горизонтально, так что отолитовая мембрана не прикладывает усилия сдвига к сенсорному эпителию . Когда голова наклоняется, макула утрикулуса оказывается расположенной под углом и тяжелая отолитовая мембрана соскальзывает на небольшое расстояние по сенсорному эпителию, в результате чего реснички изгибаются и происходит стимуляция рецептора. В зависимости от направления наклона частота импульсации в афферентных волокнах увеличивается или уменьшается. Так же происходит стимуляция макулы саккулуса. Таким образом, при любом положении головы каждая из отолитовых мембран занимает определенное положение относительно сенсорного эпителия и организм получает информацию о положении головы в пространстве.



Отолитовая мембрана , содержащая кристаллы кальцита, имеет существенно больший удельный вес (2,2), чем эндолимфа (примерно 1), которая заполняет внутреннюю полость саккулуса и утрикулуса . Если орган подвергается действию линейного ускорения, сила инерции, действующая на эндолимфу и отолитовую мембрану, различна, так как различна их плотность. Таким образом, весь отолитовый аппарат очень легко скользит по инерции по сенсорному эпителию. В результате реснички отклоняются и рецептор получает адекватный стимул.

50. ЦЕНТРАЛЬНАЯ ВЕСТИБУЛЯРНАЯ СИСТЕМА. ВЕСТИБУЛЯРНЫЕ РЕФЛЕКСЫ

Иннервация

Волокна афферентного нерва идут в продолговатый мозг, где имеются следующие вестибулярные ядра : 1. Верхнее – ядро Бехтерева; 2. Медиальное (среднее) – ядро Швальбе; 3. Латеральное (боковое) – ядро Дейтерса; 4. Нижнее – ядро Роллера.

Афферентные импульсы, приходящие от вестибулярных рецепторов в эти ядра, не дают полную информацию о положении тела в пространстве. Поэтому вестибулярные ядра получают дополнительную информацию от следующих структур: 1. Шейные рецепторы спинного мозга дают информацию о положении головы относительно туловища; 2. Мозжечок регулирует равновесие организма (утрата равновесия проявляется в неустойчивой походке, большой амплитуде движений, особенно при ходьбе («петушиный» шаг) – мозжечковая атаксия); 3. Ядра глазодвигательного нерва, которые регулируют движения глаз, вызванные вестибулярной активностью; 4. Таламус обеспечивает сознательную ориентацию в пространстве; 5. Гипоталамус, который участвует в возникновении кинетозов (укачивание).

Задний лабиринт представлен системой полукружных каналов. Это три костных трубки просветом до 0.5 мм, изогнутые полукругом. Оба конца полукружных каналов открываются в преддверие.

Полукружные каналы имеют колбообразный конец - ампулу шириной до 2 мм и один простой конец шириной до 1,5 мм. Различают три ампулярных и две простых ножки каналов. Задний и верхний полукружные каналы сливаются в единую обитую ножку.

Название полукружных каналов обозначается в зависимости от того, в какой плоскости они располагаются при прямом положении головы. Различают горизонтальный, фронтальный и сагиттальный каналы.

Каждый канал имеет несколько наименований. Верхний (передний, вертикальный, фронтальный) полукружный канал расположен почти перпендикулярно к продольной оси пирамиды височной кости. С фронтальной плоскостью верхний канал составляет угол 45°. Верхний канал образует дугообразное возвышение, обращенное к средней черепной ямке. Длина костной трубки верхнего канала достигает 16 мм.

Наружный (горизонтальный, латеральный) канал своей дугой выступает в антрум или адитус. На дне антрума ампулы наружного и верхнего полукружных каналов формируют ампулярный бугор. Длина костной трубки наружного канала - до 15 мм. С горизонтальной плоскостью наружный канал составляет угол до 30°. Функционально очень важно, что при поднятой голове оба наружных полукружных канала лежат в одной плоскости, которая направлена вниз и назад под углом 30° к горизонтали.

Задний (вертикальный, нижний, сагиттальный) полукружный канал располагается параллельно задней поверхноста пирамиды. С сагиттальной плоскостью задний канал составляет угол 45°. Длина костной трубки заднего канала достигает 20 мм.

Каналы расположены в трех различных плоскостях. Верхний и наружный полукружные каналы образуют между собой угол от 65 до 90°. задний и верхний каналы - от 85 до 115, а наружный и задний каналы расположены друг к другу практически под прямым углом.


Улитка и ее строение.

Передний лабиринт образован улиткой. Костный канал улитки начинается в переднем нижнем отделе преддверия от улиткового углубления. Канал совершает два с половиной оборота по спирали, образуя три завитка. Самый большой завиток - это основной (базальный), средний и самый малый - верхушечный завиток. При удалении костного покрова лабиринтной стенки можно увидеть ход витков улитки.

Основание улитки обращено к внутреннему слуховому проходу, а верхушка - в сторону барабанной полости. На разрезе улитка напоминает усеченный конус с шириной основания до 9 мм и высотой до 5 мм.

Спиральный канал улитки имеет протяженность до 3 см, он «слепо» заканчивается в области верхушки. Его просвет у основания улитки - до 6 мм, а ближе к верхушке - до 2 мм.

В центре спирального канала улитки проходит стержень (modiolus) в виде веретена. На всем протяжении улиткового канала вокруг модиолюса закручивается костная спиральная пластинка. Она начинается от улиткового углубления, поднимается к вершине улитки и заканчивается свободным крючком в области ее последнего завитка.

Костная спиральная пластинка имеет ширину до 1 мм и состоит из двух тонких пластинок. Основание спиральной пластинки толще, чем ее свободный край. В основании спиральной пластинки проходит спиральный канал Розенталя, где залегает спиральный ганглий (первый нейрон слухового тракта).


Костная спиральная пластинка не достигает противоположной стенки улитки и заканчивается на середине ее канала. От края спиральной пластинки начинается основная (базилярная) мембрана, которая прикрепляется в противоположной стенке улитки спиральной связкой. Верхняя часть спиральной связки, примыкающая к костной стенке улитки, называется сосудистой полоской.

Основная (базилярная) мембрана образует дно перепончатого улиткового протока, а крышей протока служит преддверная мембрана (мембрана Рейснера). Сам перепончатый улитковый проток имеет форму треугольника.

Таким образом, костная спиральная пластинка , основная (базилярная) и преддверная мембраны делят канал улитки на три этажа - лестницы. Этаж, расположенный выше пред-дверной мембраны, называется лестницей преддверия. Пространство между спиральной пластинкой, базилярной и пред-дверной мембранами - это улитковый проток, или срединная лестница улитки. Этаж, находящийся ниже базилярной мембраны, носит название барабанной лестницы улитки.

Преддверная лестница начинается в переднем отделе преддверия, поднимается по верхней грани костной спиральной пластинки до верхушки улитки. У верхушки улитки преддверная лестница переходит через отверстие улитки (heticotrета) в барабанную лестницу. Лестница преддверия связана с барабанной полостью через окно преддверия.

Барабанная лестница начинается от отверстия helicotrema, идет по нижней поверхности костной спиральной пластинки к основанию улитки. Совершив два с половиной оборота, лестница «слепо» заканчивается перед основным завитком улитки. Барабанная лестница связана с барабанной полостью посредством окна улитки.

Преддверная и барабанная лестницы заполнены перилимфой, они сообщаются только у верхушки, а у основания улитки лестницы связи не имеют. Срединная лестница улитки полностью изолирована и содержит эндолимфу.

У входа в барабанную лестницу начинается внутренняя апертура водопровода улитки. Кпереди от апертуры водопровода улитки по наружной стенке основного завитка проходит вторичная спиральная пластинка улитки (гребешок шириной 0,5 мм).

Размеры преддверия и полукружных каналов. Н. Rovsing провел рентгенологические замеры в 94 распилах височных костей, не имеющих признаков патологии. На рисунке показана схема трансорбитальной проекции. Томографический срез проходит через окно преддверия.

Знание размеров структур необходимо для дифференциальной диагностики аномалий лабиринта от его поражения вследствие воспалительных заболеваний среднего уха, для выявления признаков отосклероза и симптомов гидропса лабиринта.

Внутренняя поверхность мешочков образована слоем эпителиальных клеток, среди которых имеются чувствительные волосковые клетки с тонкими чувствительными выростами. Чувствительные отростки рецепторных клеток погружены в тонкий слой студенистой массы, в которой лежит большое количество очень мелких кристалликов углекислого кальция - статолитов. Любые изменения тела или головы в пространстве, вибрационные воздействия, ускорение или замедление прямолинейного движения вызывают перемещение статолитов. При этом статолиты раздражают определенные группы рецепторных клеток, в результате человек получает сигнал об изменении положения тела.

Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. Участки полукружных каналов, обращенные к преддверию, имеют расширения - ампулы. На внутренней поверхности ампул также имеются рецепторные клетки с чувствительными волосками, и они также погружены в тонкий слой студенистой жидкости, лежащий по внутренней поверхности ампул. Рецепторные клетки ампул тонко реагируют на малейшие перемещения эндолимфы и студенистой жидкости полукружных каналов. Перемещения жидкости возникают в результате перемещения тела или головы: ускорения, замедления движения и вращательные движения. Поскольку полукружные каналы ориентированы в трех взаимно перпендикулярных плоскостях, то любой по ворот головы или тела воспринимается вестибулярными рецепторами.

Таким образом, работа вестибулярного анализатора позволяет постоянно оценивать положение и движение тела в пространстве и в соответствии с этим рефлекторно изменять тонус скелетных мышц, в необходимом направлении менять положение головы и тела.

При повреждении вестибулярного аппарата возникают головокружения, нарушается равновесие, проявляются симптомы морской болезни.

У человека чувство равновесия и оценка положения тела в пространстве связано не только с органом равновесия, но и с наличием большого количества рецепторов (барорецепторов) в мышцах и коже, которые воспринимают механическое давление на них.

Отолитовый аппарат воспринимает не вращательные движения, как полукружные каналы, а начало и конец равномерного прямолинейного движения, ускорение или замедление его, а также (для невесомости это главное!) изменение силы тяжести.

Принцип работы отолитового аппарата -органа, специально воспринимающего силу тяжести - гравитацию. Отолитовый аппарат состоит из двух маленьких мешочков, заполненных студенистой жидкостью. Дно мешочков покрыто нервными клетками, снабженными волосками, В жидкости взвешены маленькие кристаллики солей кальция - отолиты. Они постоянно давят на волоски, которые возбуждены, и все время рождают импульсы в вестибулярном нерве. От этого мы всегда ощущаем силу тяжести. При перемещении же головы или тела отолиты смещаются и мгновенно меняется давление на волоски - по вестибулярному нерву в мозг поступает информация: «положение тела изменено».


Только в космическом полете, когда сила тяжести исчезла, отолиты взвешены в жидкости отолитового аппарата и перестают давить на волоски. Лишь тогда прекращается посылка в мозг импульсов, сигнализирующих о положении тела в пространстве относительно центра тяжести, - наступает состояние невесомости.

В невесомости исчезает чувство земли, чувство тяжести, к которому за миллионы лет приспособился организм животных и человека.

Когда мы плаваем, то, конечно, сила тяжести распределена неравномерно по всему телу, но о невесомости не может быть и речи: кристаллы давят на волосок и отолитовый аппарат работает.

Полукружные каналы

В каждом ухе имеется по три полукружных канала (ПК): верхний, задний и латеральный. Каналы находятся внутри костного лабиринта пирамидки височной кости и расположены в перпендикулярных плоскостях относительно друг друга. Снаружи ПК омываются перилимфой, а внутри заполнены эндолимфой. В каждом ПК на одном из его отделов имеется расширение - ампула.

Каждое внутреннее ухо (левое и правое) содержит три полукружных канала , один из которых (горизонтальный) расположен горизонтально, а два других (передний и задний) вертикально. Все три полукружных канала расположены приблизительно под прямым углом по отношению друг к другу и поэтому могут воспринимать угловое движение в любой плоскости или направлении.

Восприятие движений головы обеспечивается активацией правых и левых , находящихся в плоскости движения и таким образом образующих функциональную пары.
Горизонтальные каналы регистрируют повороты головы в горизонтальной плоскости.
Движения головы в диагональных или наклонных плоскостях (например, в случае, если повернутая вправо на 45° голова наклоняется вверх и вниз) регистрируются передним полукружным каналом одной стороны и задним полукружным каналом другой стороны. В приведенном примере активируются левый передний и правый задний каналы.
Движение головы вниз в сагиттальной плоскости стимулирует оба передних и ингибирует оба задних канала; движение головы вверх в этой же плоскости оказывает противоположное действие.
Наклон головы к плечу стимулирует передний и задний каналы на одной стороне и ингибирует оба вертикальных канала на другой.

Расположение полукружных каналов. Рисунок демонстрирует пары полукружных каналов, которые активируются при движении головы в наклонной (диагональной) плоскости. При наклонах повернутой на 45° вправо головы вверх и вниз ее перемещения воспринимаются левым передним и правым задним полукружными каналами

Механизм активации рецепторов полукружного канала показан на рисунке.

Каждый полукружный канал одним концом свободно сообщается с преддверием, другой конец канала расширен - так называемая ампула, в области которой находится ампулярный гребешок, содержащий рецепторный эпителий - волосковые клетки. Волоски (реснички) последних погружены в желеобразную массу - так называемый ампулярный купол (купула), который соединяется со стенками канала.


Активация рецепторов полукружного канала. При ротации головы в определенном направлении эндолимфатическая жидкость смещается в противоположную сторону. Перемещающаяся эндолимфа оказывает давление на купулу и тем самым раздражает рецепторный эпителий. При длительной ротации головы (>30 с) эндолимфа прекращает смещаться относительно головы и раздражение канала постепенно прекращается.

Отклонение купулы при угловых движениях головы сопровождается сгибанием волосков чувствительных клеток, что приводит к генерации потенциала действия, который воспринимается вестибулярным нервом. Как показано на рисунке, поворот головы влево вызывает смещение эндолимфы в противоположную сторону и, таким образом, отклоняет купулу.

Таким образом, в ЦНС поступает информация, в какой плоскости происходит перемещение головы, исходя из того, какие каналы активированы. Кроме того, ЦНС воспринимает, насколько быстро перемещается голова, что определяется по частоте потенциалов действия преддверного нерва (последняя, в свою очередь, зависит от величины отклонения купулы при перемещении эндолимфы).

На стенке ампулы находится возвышение в форме полумесяца, направленное вершиной в просвет ампулы, называемое ампулярным гребнем. В этом гребне расположена рецепторная часть вестибулярного нерва, состоящая из чувствительных нейроэпителиальных волосковых клеток и поддерживающих их опорных клеток. Сверху ампулярный гребень покрыт полупрозрачной студенистой массой - cupula ampullaris. Любое угловое движение головы сопровождается смещением эндолимфы относительно ампулярного гребня. Это вызывает деформацию волосков сенсорных клеток и генерацию потенциала действия нейрона. Таким образом, функция полукружных каналов заключается в восприятии угловых перемещений головы.

Методы исследования.

Для его исследования проводят специальные координационные пробы и пробы с вращением: вращение в кресле Барани, проба Ромберга, пальцевоносовая проба и др. Проба Яроцкого основывается на вращении головой по кругу, в норме равновесие сохраняется 27,6 с; у спортсменов - 90 с. От состояния вестибулярного анализатора в большой мере зависит ориентирование в пространстве, а также устойчивость равновесия тела. Это особенно важно в некоторых сложных видах спорта (акробатика, батут, прыжки в воду, фигурное катание, прыжки с трамплина, спортивная гимнастика и др.). При нарушениях функции вестибулярного аппарата наблюдается нистагм (непроизвольные ритмические судорожные движения глазного яблока), промахивание при пальцево-носовой пробе, неустойчивость в простой и усложненной позах Ромберга. При тренировках функция вестибулярного аппарата и его устойчивость улучшаются.

Соматосенсорная система. Рецепторные образования кожи. Тельца Пачини, Мейснера, диски Меркеля, свободные нервные окончания. Проводниковый и корковый отделы соматической сенсорной системы. Обработка информации в коре. Тактильная чувствительность, методы ее исследования.

Соматосенсорная система - совокупность сенсорных систем, обеспечивающих кодирование температурных, болевых, тактильных раздражителей.

Сенсорная система - совокупность структур центральной нервной системы:

Связанных нервными путями с рецепторным аппаратом и друг с другом;

Предназначенных для анализа раздражителей одной и той же природы с последующим кодированием внешнего сигнала.

У высокоразвитых животных и человека различают зрительную, слуховую, вестибулярную, обонятельную, вкусовую, тактильную и проприоцептивную сенсорные системы.

В соматосенсорную систему входят система кожной чувствительности и чувствительная система скелетно-мышечного аппарата, главная роль в которой принадлежит проприорецепции.

Кожная рецепция

Кожные рецепторы сосредоточены на огромной кожной поверхности (1,4–2,1 м2). В коже находится множество рецепторов, чувствительных к прикосновению, давлению, вибрации, теплу и холоду, а также к болевым раздражениям. Они весьма различны по строению, локализуются на разной глубине кожи и распределены неравномерно по ее поверхности. Больше всего их в коже пальцев рук, ладоней, подошв, губ и половых органов. У человека в коже с волосяным покровом (90% всей кожной поверхности) основным типом рецепторов являются свободные окончания нервных волокон, идущих вдоль мелких сосудов, а также более глубоко локализованные разветвления тонких нервных волокон, оплетающих волосяную сумку. Эти окончания обеспечивают высокую чувствительность волос к прикосновению. Рецепторами прикосновения являются также осязательные мениски (диски Меркеля), образованные в нижней части эпидермиса контактом свободных нервных окончаний с модифицированными эпителиальными структурами. Их особенно много в коже пальцев рук.


В коже, лишенной волосяного покрова, находят много осязательных телец (телец Мейснера). Они локализованы в сосочковом слое кожи пальцев рук и ног, ладонях, подошвах, губах, языке, половых органах и сосках груди. Другими инкапсулированными нервными окончаниями, но более глубоко расположенными, являются пластинчатые тельца, или тельца Пачини (рецепторы давления и вибрации). Они имеются также в сухожилиях, связках, брыжейке.

Механизмы возбуждения кожных рецепторов . Механический стимул приводит к деформации мембраны рецептора. В результате этого электрическое сопротивление мембраны уменьшается, т.е. увеличивается ее проницаемость для ионов. Через мембрану рецептора начинает течь ионный ток, приводящий к генерации рецепторного потенциала. При достижении рецепторным потенциалом критического уровня деполяризации генерируются импульсы, распространяющиеся по волокну в ЦНС.

Адаптация кожных рецепторов . По скорости адаптации при длящемся действии раздражителя большинство кожных рецепторов подразделяются на быстрои медленноадаптирующиеся. Наиболее быстро адаптируются тактильные рецепторы, расположенные в волосяных фолликулах, а также пластинчатые тельца. Адаптация кожных механорецепторов приводит к тому, что мы перестаем ощущать постоянное давление одежды или привыкаем носить на роговице глаз контактные линзы.

Рецепторная функция. Кожа, являясь периферическим отделом кожного анализатора, представляет собой обширное рецепторное поле, воспринимающее извне и передающее в центральную нервную систему ряд ощущений.

Различают следующие виды кожной чувствительности:

· тактильную (чувство осязания и давления);

· болевую;

· температурную (чувство холода и тепла).

Чувство осязания (прикосновения) возникает при легком надавливании на кожу, при соприкосновении кожной поверхности с окружающими предметами, оно дает возможность судить об их свойствах и ориентироваться во внешней среде. Оно воспринимается осязательными тельцами, количество которых на различных участках кожи неодинаково. Дополнительным рецептором осязания являются нервные волокна, оплетающие волосяной фолликул (так называемая волосковая чувствительность). Чувство глубокого давления воспринимается пластинчатыми тельцами.

Боль воспринимается главным образом свободными нервными окончаниями, расположенными как в эпидермисе, так и в дерме.

Температурное чувство, восприятие тепла и холода, имеет большое значение для рефлекторных процессов, регулирующих температуру тела. Предполагают, что тепловые раздражения воспринимаются тельцами Руффини, а холодовые – концевыми колбами Краузе. Холодовых точек на всей поверхности кожи значительно больше, чем тепловых.

Рецепторная функция. - Особые концевые нервные образования кожи - рецепторы служат для восприятия ощущений: боли, зуда, температуры, давления. В среднем на 1 квадратный сантиметр кожи приходится до 5000 чувствительных окончаний, 200 болевых, 12 холодовых точек, 2 тепловых и 25 точек, реагирующих на давление. Нервные рецепторы в кожном покрове распределены неравномерно. Они особенно многочисленны в коже лица, ладоней и пальцев кисти, наружных половых органов. Нервы вегетативной системы, иннервируя железы, кровеносные и лимфатические сосуды, регулируют физиологические процессы в коже. Таким образом, кожа представляет собой огромное рецепторное поле, миллионы чувствительных нервных окончаний которого постоянно осуществляют прямую и обратную связь с центральной нервной системой. На поле имеет свое представительство и каждый внутренний орган. Воздействуя на определенные зоны и точки кожи можно получить лечебный эффект. На этом основано применение отдельных физиотерапевтических процедур и метода лечения иглоукалыванием.

рецепторные тельца кожи

Часть соматовисцеральной системы, обеспечивающая чувство осязания, включает несколько разновидностей механорецепторов кожи, представленных свободными нервными окончаниями либо инкапсулированными, т. е. заключенными в капсулу из соединительной ткани или видоизмененных клеток эпидермиса (рис. 17.4). Свободные нервные окончания иннервируют волосяные фолликулы пушковых волос, покрывающих большую часть тела человека, а также грубых волос, растущих на голове, в подмышечных впадинах, на лобке, а у мужчин еще и на лице. Свободные нервные окончания волосяных фолликулов являются механоре-цепторами и возбуждаются при смещении волос или их подергивании. Другая разновидность свободных нервных окончаний имеется в эпидермисе и в сосочковом слое дермы, большинство из них являются ноцицепторами или терморецепторами, но некоторые принадлежат к механорецепторам, которые специфически реагируют на слабое околопороговое раздражение. Предполагается, что при раздражении этой разновидности рецепторов возникают ощущения щекотки и зуда.Среди инкапсулированных окончаний различают тельца Пачини, Мейсснера, Руффини, диски Меркеля , тактильные тельца Пинкуса-Игго, колбы Краузе. В зависимости от строения и формы капсулы нервные окончания подвержены наиболее сильному воздействию либо в результате давления действующим перпендикулярно раздражителем, либо вследствие бокового смещения капсулы, которая играет роль механического преобразователя энергии внешних стимулов. Большинство инкапсулированных рецепторов содержится в лишенной волос коже пальцев рук и ног, ладоней и подошв, лица, губ, языка, сосков и половых органов, где они распределены с различной плотностью и на разной глубине. Тельца Пачини имеются также в сухожилиях, связках и брыжейке.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...