Последовательный и параллельный резонанс в электрических цепях. Применение резонанса напряжений и резонанса токов

Реактивное сопротивление или проводимость двухполюсника, в состав которого входят конденсаторы и катушки индуктивности, в зависимости от частоты приложенного напряжения могут принимать как положительные, так и отрицательные значения. При определенных условиях реактивное сопротивление (проводимость) может оказаться равным нулю, а эквивалентное сопротивление (проводимость) всей цепи становится активным. В этом случае ток и напряжение на входе цепи совпадают по фазе. Такое явление называют резонансом , а соотношение −условием резонанса .

Эквивалентные параметры двухполюсника связаны соотношениями

и
,

поэтому условие
эквивалентно выполнению равенств
или
.

Из условий
,
могут быть определены значения параметров элементов электрической цепи, при которых наблюдается явление резонанса, а также значения частотырезонанса.

Если для двухполюсника
и
, то для определения значений резонансных частот может быть использовано любое из условий
или
.

В случае, когда активное эквивалентное сопротивление или активная эквивалентная проводимость двухполюсника равны нулю, для определения значений резонансных частот следует использовать оба условия
и
, так как при этом
. Равенства
и
выполняются, в частности, для цепей, содержащих только катушки индуктивности и конденсаторы.

Для описания частотных свойств электрических цепей широко используются частотные характеристики. Под частотными характеристиками понимают зависимости от частоты входных параметров цепи: r , x , z , g , b , y , а также величин, определяемых этими параметрами
,
и т.д. Рассмотрим далее частотные свойства простейших цепей, в которых возможен резонанс.

Резонанс в цепи при последовательном соединении элементов

Рассмотрим цепь, изображенную на рис. 10.1а

Комплексное сопротивление цепи равно

Угол сдвига между входным током и напряжением
обращается в нуль при равенстве нулю реактивного сопротивления цепи, то есть при выполнении условия
. Таким образом, состояние резонанса в цепи наступает при частоте
. Эта угловая частота называетсярезонансной . Векторная диаграмма для токов и напряжений в последовательном rLC контуре, построенная при
, изображена на рис. 10.1б. Как видно из векторной диаграммы, вектораи
равны по величине и противоположны по направлению, таким образом, напряжение
при резонансной частоте равно нулю. Индуктивное и равное ему емкостное сопротивление цепи при резонансной частоте

,

обозначаемое символом , носит названиеволнового сопротивления колебательного контура и измеряется в омах.

Отношение волнового сопротивления к активному сопротивлению в последовательном колебательном контуре называется добротностью , а величина, обратная добротности − затуханием :

,
.

Как следует из приведенных соотношений, добротность и затухание являются безразмерными величинами. Поскольку во всех элементах цепи, изображенной на рис. 10.1а протекает один и тот же ток, добротность показывает, во сколько раз напряжение на реактивных элементах при резонансе превышает входное напряжение. В реальных колебательных контурах эта величина может достигать значительного уровня. Поэтому резонанс в цепи с последовательным соединением элементов r , L , C иногда называютрезонансом напряжений .

При резонансной частоте полное сопротивление z

равно сопротивлению резистора r , ток и входное напряжение совпадают по фазе.

Таким образом, вся мощность, поставляемая в цепь источником, равна активной мощности, потребляемой единственным резистивным элементом, а реактивная мощность цепи равна нулю. Это означает, что в резонансе взаимный обмен энергии происходит только между конденсатором и катушкой индуктивности. Уменьшение энергии электрического поля при разряде конденсатора сопровождается увеличением энергии магнитного поля катушки и наоборот. Обмен энергией между источником и реактивными элементами отсутствует.

Рассмотрим частотные свойства цепи с последовательно соединенными элементами r , L , C . Будем считать, что на входе цепи действует синусоидальное напряжение с постоянной амплитудой и угловой частотой , меняющейся в пределах от 0 до ∞ . Изменение частоты приводит к изменению параметров цепиx , z , . На рисунке 10.2 приведены соответствующие частотные характеристики

,

Активное сопротивление рассматриваемой цепи не зависит от частоты, а реактивное при определенных значениях частоты (
) становится равным либо нулю либо бесконечности. Эти характерные значения называют соответственно нулями и полюсами частотной характеристики. Важным свойством функции
является то, что она монотонно возрастает при увеличении частоты
. В интервале частот
реактивное сопротивление возрастает от − ∞ до 0 и имеетемкостной характер, при
реактивное сопротивление возрастает от 0 до ∞ и имеетиндуктивный характер.

Рассмотрим зависимость тока в rLC контуре от частоты приложенного напряжения:

.

Анализ этого выражения показывает, что при
максимального значения
ток достигает в точке, соответствующей резонансной частоте.

Важной характеристикой rLC контура является ширина резонансной кривой или полоса пропускания, которую определяют как разность верхнейи нижнейчастот, для которых отношение
составляет
:

.

Частоты и, ограничивающие полосу пропускания, могут быть определены из соотношения

,

откуда следует, что на границах полосы пропускания реактивные сопротивления по абсолютной величине равны активному

.

Последнее соотношение эквивалентно равнству

,

Откуда
,
.

Разность частот и(полоса пропускания) определяется выражением

Если построить зависимость
в системе относительных координат
,
(рис.10.3), то ширина полосы пропускания оказывается равной затуханию контура.

В выражении напряжения на катушке индуктивности
оба сомножителя зависят от частоты. При
напряжение
. С увеличением частоты напряжение
возрастает и стремится к входному при
. Можно показать, что при
эта зависимость монотонна, а при
имеет максимум (рис. 10.4).

Напряжение на конденсаторе . При
ток в контуре отсутствует и все входное напряжение оказывается приложенным к конденсатору. При
напряжение на конденсаторе стремится к нулю. Для цепи, добротность которой превышает
, зависимость
имеет максимум; если
, напряжение на конденсаторе монотонно уменьшается с ростом частоты.

Основы > Теоретические основы электротехники

Резонансные явления в электрических цепях

Идеальное активное сопротивление от частоты не зависит, индуктивное сопротивление линейно зависит от частоты, емкостное сопротивление зависит от частоты по гиперболическому закону:



Резонанс напряжений

Резонансом в электрических цепях называется режим участка электрической цепи, содержащей индуктивный и емкостной элементы, при котором разность фаз между напряжением и током равна нулю . Режим резонанса может быть получен при изменении частоты питающего напряжения или изменением параметров элементов L и С.
При последовательном соединении возникает резонанс напряжения.

Последовательное соединение R, L, C.

Знаменатель данного выражения есть модуль комплексного сопротивления, который зависит от частоты. При достижении некоторой частоты реактивная составляющая сопротивления исчезает, модуль сопротивления становится минимальным, ток в данной схеме возрастает до максимального значения, причем вектор тока совпадает с вектором напряжения по фазе:


Максимальная амплитуда силы тока достигается при условии минимума полного сопротивления, т. е. при



где
- резонансная частота напряжения, определяемая из условия

При последовательном соединении в цепь конденсатора и соленоида силы токов в каждом из участков цепи, как известно, равны. Поэтому, умножив левую и правую части последнего соотношения на силу тока Im , получим


В этом выражении слева - амплитуда напряжения на концах соленоида, а справа - амплитуда напряжения на обкладках конденсатора.
Мы видим, что . Отсюда получаем


Знак минус указывает на то, что колебания напряжения на участках с индуктивностью и емкостью происходят в противофазе.
Режим электрической цепи при последовательном соединении индуктивности и емкости, характеризующийся равенством напряжений на индуктивности и емкости, называют резонансом напряжений .


Волновое или характеристическое сопротивление последовательного контура


Отношение напряжения на индуктивности или емкости к напряжению на входе в режиме резонанса называется добротностью контура :


Добротность контура представляет собой коэффициент усиления по напряжению и в катушках индуктивности может достигать сотен единиц:


При напряжение на индуктивности (или емкости) может быть гораздо больше напряжения на входе, что широко используется в радиотехнике. В промышленных сетях резонанс напряжений является аварийным режимом, так как увеличение напряжения на конденсаторе может привести к его пробою, а рост тока - к нагреву проводов и изоляции.

Резонанс токов

При параллельном соединении конденсатора и соленоида (смотри рисунок), так же как и при последовательном, сила тока в цепи зависит от значений емкости и индуктивности. При изменении емкости и индуктивности при определенном их соотношении сила тока в неразветвленном участке цепи оказывается минимальной (практически близкой к нулю).
В этом случае:


Параллельное соединение реактивных элементов

тогда


При определенной частоте, называемой резонансной, реактивные составляющие проводимости могут сравняться по модулю и суммарная проводимость будет минимальной. Общее сопротивление при этом становится максимальным, общий ток минимальным, вектор тока совпадает с вектором напряжения. Такое явление называется резонансом токов .
Волновая проводимость

При ток в ветви с индуктивностью гораздо больше общего тока, поэтому такое явление называется резонансом токов и широко используется в силовых сетях промышленных предприятий для компенсации реактивной мощности.
Резонансную частоту тока
найдем из условия равенства реактивных проводимостей ветвей.

После ряда преобразований получим:

Из формулы следует, что:

1) резонансная частота зависит от параметров не только реактивных сопротивлений, но и активных;
2) резонанс возможен, если и больше или меньше r , в противном случае частота будет мнимой величиной и резонанс невозможен;
3) если , то частота будет иметь неопределенное значение, что означает возможность существования резонанса на любой частоте при совпадении фаз напряжения питания и общего тока;
4) при резонансная частота напряжения равна резонансной частоте тока.

Энергетические процессы в цепи при резонансе токов аналогичны процессам, происходящим при резонансе напряжений.
Реактивная энергия циркулирует внутри цепи: в одну часть периода энергия магнитного поля индуктивности переходит в энергию электрического поля емкости, в следующую часть периода происходит обратный процесс.
При резонансе токов реактивная мощность равна нулю.
Большинство промышленных потребителей переменного тока носит активно-индуктивный характер и, следовательно, потребляет реактивную мощность. К таким потребителям относятся асинхронные двигатели, установки электрической сварки и т.д.
Для уменьшения реактивной мощности и повышения коэффициента мощности параллельно потребителю включают батарею конденсаторов, что приводит к уменьшению тока в проводах, соединяющих потребителя с источником энергии .

Резонанс напряжений (или последовательный резонанс) может наблюдаться в электрической цепи, содержащей последовательно соединённые участки с разным характером реактивности. Название объясняется тем, что при резонансе оказываются равными друг другу по величине реактивные составляющие напряжений на указанных выше участках с разным характером реактивностей.

Резонанс напряжений может наблюдаться, к примеру, в цепи рис. 1.Найдём условие резонанса в этой цепи. Для этого участки R1 L и R2 C заменим эквивалентными (рис. 2).

Как известно:

Если X’L окажется больше X’C, то цепь рис. 2 (а вместе с тем и цепь рис. 1) будет иметь активно-индуктивный характер и резонанс невозможен. Если X’L < X’C, то цепи рис. 1 и рис. 2 имеют активно-емкостной характер и резонанс также невозможен. При X’L = X’C цепи имеют чисто активный характер, следствием чего оказывается совпадение по фазе напряжения U и тока I , т.е. резонанс в цепи рис. 1.

С учётом (1) и (2) условие резонанса принимает вид:

Соотношение (3) приводит к уравнению третьей степени относительно частоты ω. Единственный положительный корень этого уравнения определяет так называемую резонансную частоту:

где – характеристическое сопротивление цепи.

Векторная диаграмма для цепи рис. 1 на резонансной частоте показана на рис. 3. Из диаграммы видно, что при резонансе, действительно, равны реактивные составляющие напряжений U1 и U2 .

U 1 p = U 2 p

Рис. 3

Рассмотрим интересный частный случай цепи рис. 1 при условии . Комплексное сопротивление такой цепи равно:

Таким образом, выяснилось, что комплексное сопротивление указанной цепи на всех частотах чисто активно. Это означает, что резонанс в данной цепи наблюдается на любой частоте.

Резонанс токов

Резонанс токов (или параллельный резонанс) может наблюдаться в электрической цепи, содержащей параллельно соединённые участки с разным характером реактивностей.

Название в этом случае объясняется тем, что при резонансе оказываются равными друг другу по величине реактивные составляющие токов указанных выше участков с разным характером реактивностей.

Резонанс токов может, к примеру, наблюдаться в цепи рис. 4

Условие резонанса для данной цепи можно найти аналогично тому, как это делалось для цепи рис. 1.

Рис. 4

Это условие имеет вид:

Решая это уравнение (5) относительноω, найдём резонансную частоту:

Векторная диаграмма для цепи рис. 4 на резонансной частоте показана на рис. 5. Из неё видно, что при резонансе токов, действительно, равны по величине реактивные составляющие токов I 1 и I 2 .

I 1p = I 2p

Точно так же, как и в предыдущем случае, можно доказать, что комплексное сопротивление цепи рис. 4 при условии

на любой частоте и равно: Z = R .

Это и означает, что и в этой цепи резонанс имеет место на всех частотах.

Резонанс токов возникает в электрических цепях переменного тока при параллельном соединении ветвей с разнохарактерными (индуктивными и емкостными) реактивными сопротивлениями. В режиме резонанса токов реактивная индуктивная проводимость цепи оказывается равной ее реактивной емкостной проводимости, т.е. B L =B C .

Простейшей электрической цепью, в которой может наблюдаться резонанс токов, является цепь с параллельным соединением катушки индуктивности и конденсатора. Данная схема соответствует цепи, представленной на рис. 8, а , для которойR 2 = 0, а R 1 =R к (здесьR к – активное сопротивление катушки индуктивности). Полная проводимость такой цепиY =.

Условие резонанса токов (B L =B C) можно записать через соответствующие параметры электрической цепи. Так как реактивная проводимость катушки, имеющей активное сопротивлениеR к, определяется выражениемB L =X L /=L /(R к 2 + 2 L 2), а проводимость конденсатора без учета его активного сопротивления (R C = 0)B C =X C /= 1/X C =C , то условие резонанса может быть записано в виде

L /(+ 2 L 2) = C .

Из этого выражения следует, что резонанс токов в такой цепи можно получить при изменении одного из параметров R к,L ,C ипри постоянстве других. При некоторых условиях в подобных цепях резонанс может возникать и при одновременном изменении указанных параметров.

Простейшие резонансные цепи, состоящие из параллельно соединенных между собой катушки индуктивности и конденсатора, широко применяются в радиоэлектронике в качестве колебательных контуров, резонанс токов в которых достигается при некоторой определенной частоте поступающего на вход соответствующего устройства сигнала.

В лабораторных условиях наиболее часто резонанс токов достигается при неизменной индуктивности катушки L , путем изменения емкостиС батареи конденсаторов. С изменением емкостной проводимостиB C =C , пропорциональной емкости конденсатора, происходит изменение полной проводимостиY , общего токаI и коэффициента мощности cos. Указанные зависимости приведены на рис. 10,a . Анализ этих зависимостей показывает, что при увеличении емкости от нуля полная проводимость электрической цепи сначала уменьшается, достигает при (B L =B C) своего минимума, а затем возрастает с увеличениемС , в пределе стремясь к бесконечности. Общий токI =YU , потребляемый цепью, пропорционален полной проводимости. Поэтому характер его изменения подобен характеру изменения проводимости.

Коэффициент мощности cosс увеличением емкости сначала возрастает, а затем уменьшается, в пределе стремясь к нулю, так как cos=G /Y . В результате анализа указанных зависимостей можно установить, что резонанс токов характеризуется следующими явлениями.

a) б)

1. При резонансе токов полная проводимость всей электрической цепи приобретает минимальное значение и становится равной активной ее составляющей:

Y = =G .

2. Минимальное значение проводимости обусловливает минимальное значение тока цепи:

I = YU = GU .

3. Емкостный ток I C и индуктивная составляющаяI L тока катушкиI к оказываются при этом равными по величине, а активная составляющая тока катушкиI а1 становится равной токуI , потребляемому из сети:

I р1 = I L = B L U = B C U = I C = I р2 ; I а = I а1 =GU = YU =I .

При этом реактивные составляющие токов I L иI C в зависимости от значений реактивных проводимостей могут приобретать теоретически весьма большие значения и намного превышать токI , потребляемый электрической цепью из сети.

4. Реактивная составляющая полной мощности цепи при B L =B C оказывается равной нулю:

Q = B L U 2  B C U 2 = Q L  Q C = 0.

При этом индуктивная и емкостная составляющие реактивной мощности также могут приобретать весьма большие значения, оставаясь равными друг другу.

5. Полная мощность цепи при резонансе равна ее активной составляющей:

S = YU 2 = GU 2 = P .

6. Коэффициент мощности всей цепи при резонансе:

cos = P /S = GU 2 /YU 2 = 1.

Напряжение и ток электрической цепи при резонансе токов совпадают по фазе. Векторная диаграмма, построенная для условий резонанса токов и применительно к рассматриваемой цепи, представлена на рис. 10, б . В табл. 2 методических указаний по выполнению работы обозначениямI L , I K , I C соответствуют обозначенияI р1 , I 1 , I р2 на векторной диаграмме токов (рис. 10,б ).

Резонанс токов находит широкое применение в силовых электрических цепях для повышения коэффициента мощности, так как это имеет большое технико-экономическое значение. Большинство промышленных потребителей переменного тока имеют активно-индуктивный характер; некоторые из них работают с низким коэффициентом мощности и потребляют значительную реактивную мощность. К таким потребителям могут быть отнесены асинхронные двигатели (особенно работающие с неполной нагрузкой), установки электрической сварки, высокочастотной закалки и т.д. Для уменьшения реактивной мощности и повышения коэффициента мощности параллельно потребителю включают батарею конденсаторов. Реактивная мощность конденсаторной батарей снижает общую реактивную мощность установки и тем самым увеличивает коэффициент мощности. Повышение коэффициента мощности приводит к уменьшению тока в проводах за счет снижения его реактивной составляющей и, соответственно, к уменьшению потерь энергии в генераторе и подводящих проводах.

Резонансом называется такой режим пассивной цепи, содержащей катушки индуктивности и конденсаторы, при котором ее входное реактивное сопротивление или ее входная реактивная проводимость равны нулю. При резонансе ток на входе цепи, если он отличен от нуля, совпадает по фазе с напряжением.

Рассмотрим последовательное соединение сопротивления, индуктивности и емкости (рис. 3-8). Такую цепь часто называет последовательным контуром. Для нее наступает резонанс, когда или , т. е.

При значения противоположных по фазе напряжений на индуктивности и емкости равны (рис. 3-11, б), поэтому резонанс в рассматриваемой цепи называют резонансом напряжений.

Напряжения на индуктивности и емкости при резонансе могут значительно превышать напряжение на зажимах цепи, которое равно напряжению на активном сопротивлении. Полное сопротивление цепи при минимально: , а ток при заданном

напряжении U достигает наибольшего значения . В теоретическом случае при полное сопротивление цепи в режиме резонанса также равно нулю, а ток при любом конечном значении напряжения U бесконечно велик. Точно так же бесконечно велики напряжения на индуктивности и емкости.

Из условия следует, что резонанса можно достичь, изменяя либо частоту напряжения источника, либо параметры цепи - индуктивность или емкость. Угловая частота, при которой наступает резонанс, называется резонансной угловой частотой

Индуктивное и емкостное сопротивления при резонансе

Величина называется характеристическим сопротивлением цепи или контура.

Отношение напряжения на индуктивности или емкости к напряжению, приложенному к цепи, при резонансе

называют добротностью контура или коэффициентом резонанса. Коэффициент резонанса указывает, во сколько раз напряжение на индуктивности или на емкости при резонансе больше, чем напряжение, приложенное к цепи: если . Наименование «добротность» контура будет разъяснено в следующем параграфе.

Для уяснения энергетических процессов при резонансе определим сумму энергий магнитного и электрического полей цепи Пусть ток в контуре . Тогда напряжение на емкости

Суммарная энергия

и, следовательно,

т. е. сумма энергий магнитного и электрического полей с течением времени не изменяется. Уменьшение энергии электрического поля сопровождается увеличением энергии магнитного поля и наоборот. Хаким образом, наблюдается непрерывный переход энергии из электрического поля в магнитное поле и обратно.

Энергия, поступающая в цепь от источника питания, в любой момент времени целиком переходит в тепло. Поэтому для источника питания вся цепь эквивалентна одному активному сопротивлению.

Наименование «резонанс» для рассмотренного режима цепи заимствовано из теории колебаний. Как известно, резонансом называется процесс вынужденных колебаний с такой частотой, при которой интенсивность колебаний при прочих равных условиях максимальна. Но характеризовать интенсивность колебательного процесса можно по различным проявлениям, максимумы которых наблюдаются при различных частотах. Поэтому нужно условиться о критерии резонанса.

В электрической цепи колеблются заряды. Можно было бы взять за критерий резонанса максимум амплитудного значения заряда на емкости, что соответствует максимальной амплитуде напряжения на емкости. Этот критерий определяет амплитудный резонанс. Для принятого в начале параграфа критерия резонанса ток при резонансе совпадает по фазе с приложенным напряжением, это так называемый фазовый резонанс. В рассматриваемой схеме (рис. 3-8) фазовый резонанс наступает при максимальной скорости движения колеблющихся зарядов или максимуме тока.

Если заряженный конденсатор замкнуть на катушку индуктивности, то в такой цепи при достаточно малом сопротивлении катушки наблюдается процесс затухающих колебаний напряжений и тока. Частота этих колебаний называется частотой собственных или свободных колебаний. Отметим, что частоты, при которых наблюдаются фазовый и амплитудный резонансы, не совпадают с частотой собственных колебаний (они совпадают только в теоретическом случае, когда сопротивление цепи равно нулю). Принятый здесь критерий резонанса применим и в том случае, когда в цепи вследствие большого сопротивления собственные колебания невозможны.




В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...