Схема эл муз инструмента фасолька. Радиосхемы схемы электрические принципиальные

И. НЕЧАЕВ, г. Курск
Радио, 2002 год, № 5

Принцип работы игрушки основан на изменении частоты RC-генератора, у которого в качестве частотозадающего элемента использован фоторезистор. При изменении его освещенности "плавает" частота генератора, а значит, тональность звука в головных телефонах или динамической головке, подключенных к нему. Так можно "подбирать " нужную мелодию.

О "светофонах" уже рассказывалось на страницах журнала "Радио" . Но в отличие от них, предлагаемые две конструкции снабжены сенсорными регуляторами громкости.

На рис. 1 приведена схема игрушки, собранной на логической микросхеме и транзисторе.

Схема музыкальной игрушки "Светофон"

На элементах DD1.1, DD1.2 выполнен задающий генератор прямоугольных импульсов,частота которого определяется общим сопротивлением фоторезистора R1 и резистора R2, а также емкостью конденсатора С1. При увеличении освещенности фоторезистора его сопротивление уменьшается, а частота генератора увеличивается.

На элементах DD1.3, DD1.4 собраны буферные каскады, а на транзисторе VT1 ≈ усилитель мощности, нагруженный на головные телефоны BF1 (или динамическую головку сопротивлением не менее 50 Ом).

Импульсы генератора с выхода элемента DD1.3 (рис. 2, а) поступают на вход элемента DD1.4 через дифференцирующую цепочку, состоящуюиз конденсатора С2, резисторов R3, R4 и сенсоров Е1, Е2. Если сопротивление между ними велико, конденсатор С2 не будет успевать заряжаться во время действия импульса, и форма импульсов на входе этого элемента будет практически такой же (кривая 1 на рис. 2,б). На выходе элемента формируются короткие импульсы напряжения (кривая 1 на рис. 2,в), открывающие транзистор. Такие же импульсы поступают на телефоны, но громкость звука минимальна.

При уменьшении сопротивления между сенсорами, когда их "перекрывают" пальцем, конденсатор С2 успевает частично заряжаться и форма напряжения на входе элемента DD1.4 изменяется (кривая 2 на рис. 2,б). Это приводит к тому, что длительность импульса на его выходе увеличивается (кривая на рис. 2,в), а громкость звука возрастает. Дальнейшее уменьшение сопротивления между сенсорами приводит к увеличению длительности импульса на выходе элемента DD1.4 (кривая 3 на рис. 2,в), а значит, и громкости.

Кроме указанных на схеме, в устройстве можно применить микросхему К564ЛЕ5, К561ЛА7, К564ЛА7, диод КД521А, КД503А, КД103А. Полярные конденсаторы ≈ К50-6, К50-35 или аналогичные импортные, неполярные ≈ КЛС, К10-17. Фоторезистор ≈ СФ2-5, СФ2-6, ФСК-К1. Телефоны BF1 ≈ ТОН-2 или другие высо-коомные (более 500 Ом), при использовании низкоомных телефонов или динамической головки надо установить транзистор КТ972 с любым буквенным индексом.

Большинство деталей устройства монтируют на печатной плате (рис. 3) из односторонне фольгированного стеклотекстолита. Плату помещают в светонепроницаемый пластмассовый корпус, в котором надо выпилить отверстие размерами примерно 10x30 мм. Напротив отверстия на расстоянии 20...30 мм размещают фоторезистор. Сенсоры представляют собой пластину односторонне фольгированного стеклотекстолита размерами примерно 20x30 мм, металлизация на которой разрезана с зазором около 0,5...1 мм посередине вдоль широкой стороны. Образовавшиеся две металлизированные площадки соединяют с соответствующими деталями устройства. Недостаток этой простой конструкции ≈ зависимость диапазона регулировки громкости от частоты задающего генератора. Избежать его удалось в более сложном "светофоне" (рис. 4), выполненном на микросхеме, содержащей два ОУ.

На ОУ DA1.1 собран RC-генератор прямоугольных импульсов, частота которого зависит от сопротивления фоторезистора R10. На ОУ DA1.2 собран усилитель мощности, к выходу которого можно непосредственно подключать высокоомные головные телефоны (скажем, ТОН-2). Для подключения динамической головки сопротивлением около 50 Ом (например, 0,5ГДШ-9) устройство следует доработать в соответствии с рис. 5.

Питается устройство однополярным напряжением, поэтому для нормальной работы микросхемы применена искусственная "средняя точка" из резисторов R8, R9 и конденсаторов СЗ, С4.

Громкость звука регулируют с помощью сенсоров Е1, Е2 ≈ при уменьшении сопротивления между ними на вход усилителя мощности поступает сигнал большего уровня и громкость звука возрастает. Чувствительность сенсорного регулятора громкости можно устанавливать подстроенным резистором R5.

В этом устройстве, кроме микросхемы, допустимо применить такие же детали, что и в предыдущей конструкции, подстроенный резистор ≈ СПЗ-19. Большинство деталей, в том числе и сенсоры, размещены на печатной плате (рис. 6) из двусторонне фольгированного стеклотекстолита.

Для увеличения кликните по изображению (откроется в новом окне)

Плата одновременно является и передней панелью устройства, в которой выпилено окно для освещения фоторезистора. Со стороны, противоположной размещению деталей, расположены сенсоры (показаны штриховыми линиями). Плата будет крышкой светонепроницаемого пластмассового корпуса. На окно должен падать свет от любого источника. Закрывая окно рукой или пальцами в большей или меньшей степени, изменяют частоту сигнала, а касаясь сенсоров пальцем, ≈ громкость звука. Чем сильнее нажатие на сенсоры, тем громче звук.

ЛИТЕРАТУРА
1. Доценке Ю. Светофон. - Радио, 1984, № 11, с. 49.
2. Нечаев И. Электромузыкальный инструмент "Светофон". - Радио, 1990 ,c. 60, 61.

Возможности электронных устройств воспроизводить различные звуковые эффекты широко используются при конструировании современных электромузыкальных инструментов. Музыкальные инструменты своими руками могут быть различные приставки и имитаторы, придающие необычное «электронное» звучание традиционным инструментам - гитаре, барабану, роялю.

Любой генератор звуковой частоты вырабатывает электрические колебания, которые, будучи поданными на усилитель ЗЧ, преобразуются его динамической головкой в звук. Тональность звука зависит от частоты колебаний генератора.

Если в генераторе использовать набор резисторов разных сопротивлений и включать их в частотозадающую цепь обратной связи, получится простой электромузыкальный инструмент, на котором можно исполнять несложные мелодии. Схема такого инструмента приведена на рисунке ниже.


Музыкальные инструменты своими руками. Схема генератора звукового диапазона

Генератор выполнен на транзисторах VT1 и VT2 разной структуры по общеизвестной схеме. Генерация образуется из-за положительной обратной связи между выходными и входными цепями усилительных каскадов на указанных транзисторах. Частоту генерируемых колебаний можно изменять включением в цепь обратной связи переключателем SA1 либо конденсатора С1, либо С2, а также одного из резисторов Rl - R8 (клавишами инструмента SB1 - SB8). Когда подвижный контакт переключателя находится в показанном на схеме положении, при нажатии на клавиши будут раздаваться звуки первой октавы. Если же подвижный контакт переключателя перевести в противоположное положение, можно получать звуки второй октавы. Нажимать нужно только одну из клавиш. Если же случайно окажутся нажатыми две клавиши, в цепь обратной связи включатся два параллельно соединенных резистора, и частота генератора не будет соответствовать ни одному из звуков данной октавы. Причем частота генератора будет выше, чем при нажатии любой из двух клавиш в отдельности.

Резистор R9 ограничивает максимальную частоту генератора, a R10 - наибольшую неискаженную громкость звука.

Подстроечные резисторы - СПЗ-16, постоянные - МЛТ-0,25 конденсаторы - МБМ. Транзистор VT1 может быть, кроме указанного на схеме, МП38, МП38А или другой маломощный Кремниевый транзистор структуры n-р-n со статическим коэффициентом передачи тока не менее 50. С таким же коэффициентом следует взять и транзистор VT2 - он может быть серий Г1213 - П217. Динамическая головка - мощностью 0,5 - 1 Вт, например 1ГД-18, 1ГД-28. Источник питания - батарея 3336. Выключатель и переключатель - любой конструкции. Клавиши могут быть как готовые, скажем, от детского музыкального инструмента-игрушки, так и самодельные. В любом случае под ними устанавливают контакты, например, от электромагнитных реле (лучше всего телефонных), которые будут замыкаться при нажатии на клавиши. Возможен вариант использования малогабаритных кнопок, к примеру КМ1-1. Основные детали Инструмента могут быть смонтированы на плате (рис. 82) навесным или печатным способом. Плату размещают внутри корпуса (рис. 83) произвольной конструкции. На лицевой стенке кopпуca укрепляют динамическую головку и органы управления (клавиатуру, выключатель, переключатель). Источник питания монтируют внутри корпуса или на нижней (съемной) крышке.

Настройка музыкального инструмента осуществляется своими руками с помощью установки движков подстроенных резисторов для получения соответствующего тона. Сопротивления резисторов должны быть такими, чтобы получились фиксированные тона от «до» (или «ля») первой октавы до «до» (или «ля») второй с интервалами в один тон. Настройку производят по звукам рояля, пианино, аккордеона или другого музыкального инструмента. Сначала, нажав клавишу - кнопку SB8, подбором положения движка резистора R8 настраивают генератор на частоту первого исходного тона - «до» или «ля» первой октавы (эта клавиша должна быть на левом, со стороны музыканта, конце клавиатуры). Затем нажимают клавишу SB7 и подбором положения движка резистора R7 добиваются звуча ния следующего тона - «ре» (или «си») и т. д. Небольшое смещение музыкального строя инструмента можно осуществить соответствующим подбором резистора R9.

Возможности музыкального инструмента своими руками можно расширить, использовав клавиатуру с 12 клавишами. Тогда помимо основных тонов появятся дополнительные («до диез», «ля бемоль» и др.)- Громкость звука зависит от напряжения источника питания. Увеличение его до 9 В повышает громкость, но при этом, возможно, придется укрепить мощный транзистор VT2 на небольшом радиаторе в виде П-образного уголка, согнутого из листового алюминия толщиной 1...2 мм.

Это первый музыкальный инструменты своими руками, положивший начало новому направлению в радиоэлектронике - электронной музыке (сокращенно электромузыке). Разработал его в 1921 г. молодой петроградский физик Лев Термен. По имени изобретателя и был назван необычный электромузыкальный инструмент. Необычен же он тем, что не имеет клавиатуры, струн или труб, с помощью которых получают звуки нужной тональности. Игра на терменвоксе напоминает выступление фокусника-иллюзиониста - самые разнообразные мелодии звучат из динамической головки при едва заметных манипуляциях одной или двумя руками вблизи металлического прутка-антенны, торчащего на корпусе инструмента.

Секрет терменвокса в том, что в нем находятся два независимых генератора, вырабатывающих колебания весьма высокой частоты - около сотни тысяч герц. Но частоту одного из генераторов можно изменять своеобразным переменным конденсатором, образуемым рукой играющего и металлическим штырем-антенной, соединенной с частотозадающей цепью генератора. Приближение руки к антенне или удаление ее приводит к изменению суммарной емкости частотозадающей цепи, а значит, частоты генератора.

Сигналы обоих генераторов подаются на смеситель. На выходе смесителя выделяется разностный сигнал, который усиливается усилителем ЗЧ и воспроизводится динамической головкой. В исходном состоянии частоты обоих генераторов одинаковые, разностного сигнала практически нет, звука не слышно. Но стоит приблизить к антенне руку, как разностный сигнал появляется и в головке раздается звук. Тональность его изменяют рукой, приближаемой к антенне или удаляемой от нее.



Музыкальные инструменты своими руками. Схема Терменвокса

Таков принцип работы любого терменвокса. Разница между конструкциями заключается в схемотехническом решении отдельных узлов - генератора, смесителя, усилителя, а также в наличии узлов, позволяющих получать оригинальные оттенки звучания или звуковые эффекты.

Знакомство с терменвоксом лучше всего начать, конечно, с простой конструкции, например, приведенной на рис. 84. Собран терменвокс на трех интегральных микросхемах. В первом, перестраиваемом генераторе используется микросхема DD1. На элементах DD1.1 и DD1.2 выполнен мультивибратор, а на DD1.3 - разделительный каскад. Частота колебаний мультивибратора зависит от сопротивления резистора R1, емкости конденсатора С2 и емкости между антенной WAl и общим проводом инструмента, которую образует поднесенная к антенне рука исполнителя. Для получения максимальной чувствительности генератора к емкости антенна-рука частота генератора выбрана сравнительно высокой - сотни килогерц.

Во втором генераторе, с фиксированной частотой, работает микросхема DD2, элементы которой используются так же, как и элементы микросхемы первого генератора. Частоту генерируемых колебаний можно изменять в небольших пределах переменным резистором R2 «Частота».

С выхода каждого генератора сигнал поступает через согласующий каскад на «свой» вход смесителя, выполненного на микросхеме DD3. Если на одном входе сигнал частотой f1, а на другом f2, на выходе смесителя будут сигналы с частотами f1 ± f2. Причем амплитуда колебаний разностной частоты составит десятые доли и даже единицы вольт, что позволяет обойтись без дополнительного усилителя ЗЧ и подключить к выходу смесителя через конденсатор С4, трансформатор Т1 и переменный резистор R4 «Громкость» динамическую головку ВА1. Колебания же суммарной частоты динамической головкой не воспроизводятся.

Для увеличения громкости звука музыкального инструмента своими руками все логические элементы микросхемы DD3 включены параллельно. Громкость звука можно плавно изменять переменным резистором R4.

Терменвокс питается от источника GB1. Для предупреждения взаимного влияния генераторов напряжение на каждый из них подается через RC-фильтр. Потребляемый инструментом ток составляет 7... 10 мА.

Кроме указанных на схеме, могут быть использованы микросхемы К561ЛЕ5, К561ЛА9, К561ЛЕ10 (DD1 и DD2); К561ЛЕ5 К561ЛЕ6, К561ЛА7 - К561ЛА9, К561ЛЕ10 (DD3) или другие аналогичные микросхемы серий К176, К564. Конденсаторы С1 - СЗ могут быть КД, КТ, КМ, остальные - К50-6, К53-1. Переменные резисторы - СПО, СП4-1, постоянные - МЛТ-0,25 или другие малогабаритные, выключатель - МТ1, источник питания - батарея «Крона» или аккумулятор 7Д-0,1. Трансформатор - выходной от любого малогабаритного транзисторного приемника (используется одна половина первичной обмотки). Динамическая головка - мощностью 0,1 - 0,25 Вт, например 0,1ГД-6, 0.2ГД-1.

Все детали, кроме источника питания, монтируют на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1...1.5 мм. Она же является и лицевой панелью инструмента. Переменные резисторы и выключатель устанавливают в отверстиях платы, трансформатор и динамическую головку приклеивают. Напротив диффузора головки в плате сверлят отверстия и закрывают их со стороны монтажа неплотной тканью. Выводы деталей припаивают к проводникам платы.

Плату крепят к металлическому корпусу размерами ЗОХ Х75Х145 мм. Внутри корпуса размещают батарею питания и подключают ее к плате многожильным монтажным проводом в изоляции. Можно, конечно, использовать для подключения батареи разъем от использованной «Кроны».

Контакт ХТ1 представляет собой винт М4, пропущенный через отверстие в плате и закрепленный снаружи гайкой. Шляпка винта должна надежно соединяться с контактной площадкой платы, к которой подпаян конденсатор С1.

Перед игрой на терменвоксе к винту крепят антенну - отрезок металлической трубки диаметром 6 и длиной 300...500 мм с резьбой на конце.

Если монтаж выполнен без ошибок и детали исправны, терменвокс начинает работать сразу. Пользуются им так. Включив питание, устанавливают резистором R2 режим так называемых нулевых биений, когда частоты обоих генераторов равны и в динамической головке звука нет. В то же время при поднесении руки к антенне звук должен появляться. Более точной установкой движка резистора R2 добиваются того, чтобы звук появлялся на возможно большем расстоянии между рукой и антенной. Тональность звука должна возрастать, когда руку приближают к антенне.

Для повышения чувствительности инструмента нужно во время игры касаться одной рукой корпуса или ручки настройки (она должна быть металлической, надежно соединяться с корпусом резистора, а значит, с общим проводом инструмента), а другой подбирать мелодию.

Повысить громкость звучания терменвокса можно подключением к выходу смесителя усилителя звуковой частоты, например, радиоприемника или магнитофона. Для этих целей на корпусе инструмента желательно установить разъем.

Барабан - один из популярных музыкальные инструменты своими руками, которые любят собирать начинающие радиолюбители, но он очень громоздкий. Уменьшить его габариты и сделать более удобным в транспортировке - желание едва ли не каждого ансамбля. Если воспользоваться услугами электроники и собрать приставку к мощному усилителю (а он сегодня - неотъемлемая часть аппаратуры ансамбля), можно получить имитацию звучания барабана.

Если с помощью микрофона, усилителя и осциллографа «просмотреть» звук барабана, то удастся обнаружить следующее. Сигнал на экране осциллографа промелькнет в виде всплеска, напоминающего падающую каплю воды. Правда, падать она будет справа налево. Это значит, что левая часть «капли» имеет крутой фронт, обусловленный ударом по барабану, а затем следует затухающий спад - он определяется резонансными свойствами барабана. Внутри же «капля» заполнена колебаниями почти синусоидальной формы частотой 100...400 Гц - это зависит от размеров и конструктивных особенностей данного инструмента.

Подобные электрические колебания может генерировать, например, контур ударного возбуждения, если подать на него запускающий импульс, или генератор звуковых колебаний, находящийся в заторможенном (ждущем) режиме в момент кратковременного запуска его. Остановимся на втором варианте и познакомимся со схемой приставки, приведенной на рис. 87.

На транзисторе VT2 собран генератор звуковой частоты. Колебания в нем возбуждаются благодаря действию положительной обратной связи (ПОС) между коллектором и базой транзистора. ПОС осуществляется изменением фазы коллекторного сигнала на 180°, которое достигается с помощью трехзвенной цепочки С1 - СЗ, R4 - R6. Частота генерируемого сигнала зависит от номиналов этих деталей и может лежать в пределах 100...400 Гц.



Музыкальные инструменты своими руками. Схема электронного барабана

Ждущий режим генератора получается шунтированием резистора R4 фазосдвигающей цепи сопротивлением участка сток-исток полевого транзистора. А оно, в свою очередь, зависит от напряжения смещения на затворе транзистора, устанавливаемого переменным резистором R2. Чем больше напряжение смещения, т. е. чем выше по схеме находится движок переменного резистора, тем меньше сопротивление указанного участка, тем сильнее шунтирование резистора R4.

Исходное напряжение смещения, подаваемое на выводы резистора R4, образовано делителем R1VD1, иначе говоря, используется прямое напряжение диода. В данном случае диод совместно с резистором R1 выполняет роль своеобразного параметрического стабилизатора напряжения.

Получающийся сигнал генератора подается через разъем XS1 на усилитель мощности звуковой частоты.

Чтобы «ударить» по электронному барабану, нужно нажать кнопку SB1. Через ее замыкающиеся контакты, конденсатор С5 и диод VD2 на базовую цепь транзистора генератора поступит импульс напряжения положительной полярности. Генератор возбудится, и на усилитель мощности пройдет сигнал звуковой частоты. Длительность сигнала, иначе говоря, продолжительность звука барабана зависит от положения движка переменного резистора R2: чем он ближе к верхнему по схеме выводу, тем продолжительнее звук. Повторный «удар» прозвучит после того, как кнопку отпустят и нажмут вновь.

Полевой транзистор может быть серии КП302 с буквенными индексами А или Б, биполярный - из серии КТ312 или КТ315 с индексами Б - Г и возможно большим коэффициентом передачи тока. Диод VD1 - любой из серии Д226, VD2 - любой из серии Д9, Д18, Д20. Постоянные резисторы - МЛТ-0,25, переменный - СП-1. Конденсаторы С1 - СЗ - МБМ, С4 - К50-6, С5 - типа КМ или КЛС. Источник питания - «Крона».

Часть указанных деталей смонтирована на плате, устанавливаемой затем в небольшой корпус, желательно металлический. На лицевой стенке корпуса размещают переменный резистор, выключатель питания и разъем, а на верхней - кнопку SB1. Батарея находится внутри корпуса - она подключена к деталям приставки отрезками монтажного провода в изоляции. Конечно, для удобства замены батареи ее можно подключать через разъем от использованной «Кроны», но делать это необязательно, поскольку потребляемый приставкой ток не превышает 4 мА, и энергии батареи хватит надолго.

Налаживание приставки сводится к установке постоянного напряжения на коллекторе транзистора VT2 около 5 В подбором резистора R3. Если необходимо изменить тональность звука барабана, следует установить конденсаторы С1 - СЗ других номиналов (но обязательно одинаковых). При проверке и налаживании приставки работу ее контролируют высокоомными головными телефонами ТОН-1, ТОН-2 или аналогичными, подключаемыми к разъему через конденсатор емкостью 0,01...0,1 мкФ.

При исполнении различных музыкальных произведений обычно пользуются несколькими барабанами, каждый из которых обладает своей тональностью звучания. В электронном варианте под каждый барабан можно изготовить отдельную приставку с разными конденсаторами С1 - СЗ и подключать к усилителю тот или иной имитатор либо перестановкой вилки от усилителя мощности, либо с помощью переключателя, например кнопочного. В этом случае следует помнить об увеличении длины соединительных проводов и во избежание появления фона переменного тока в громкоговорителе экранировать их.

Возможен вариант, при котором все приставки будут смонтированы в общем корпусе, а их выходы соединены с разъемом XS1 через кнопочный, клавишный или галетный переключатель. Для питания такой конструкции нужно использовать источник большей мощности, например составленный из элементов 373, или сетевой выпрямитель с постоянным выходным напряжением 8...10 В.

Популярность электрогитары сегодня во многом объясняется возможностью подключать к ней электронные приставки, позволяющие получать самые разнообразные звуковые эффекты. Среди музыкантов-электрогитаристов можно услышать незнакомые для непосвященных слова «вау», «бустер», «дистошн», «тремоло» и другие. Все это - названия эффектов, получаемых во время исполнения мелодий на электрогитаре.

О некоторых приставках для получения подобных эффектов и пойдет рассказ. Все они рассчитаны на работу как с промышленными звукоснимателями, устанавливаемыми на обычную гитару, так и с самодельными, изготовленными по описаниям в популярной радиолюбительской литературе.


Отличный способ увеличения громкости звучания гитары это специальный музыкальный инструмент - звукосниматель к гитаре, преобразующий звуки в электрический сигнал усиливаемый электроакустической системой и вновь превращаемый в звук, но во много раз более мощный.

Схемы простейших электронных устройств для начинающих радиолюбителей. Простые электронные игрушки и устройства которые могут быть полезны для дома. Схемы построены на основе транзисторов и не содержат деффицитных компонентов. Имитаторы голосов птиц, музыкальные инструменты, светомузыка на светодиодах и другие.

Генератор трелей соловья

Генератор трелей соловья, выполненный на асимметричном мультивибраторе, собран по схеме, приведенной на рис. 1. Низкочастотный колебательный контур, образованный телефонным капсюлем и конденсатором СЗ, периодически возбуждается импульсами, вырабатываемыми мультивибратором. В итоге формируются звуковые сигналы, напоминающие соловьиные трели. В отличие от предыдущей схемы звучание этого имитатора не управляемое и, следовательно, более однообраз ное. Тембр звучания можно подбирать, меняя емкость конденса тора СЗ.

Рис. 1. Генератор-иммитатор трелей соловья, схема устройства.

Электронный подражатель пения канарейки

Рис. 2. Схема электронного подражателя пения канарейки.

Электронный подражатель пения канарейки описан в книге Б.С. Иванова (рис. 2). В его основе также асимметричный мультивибратор. Основное отличие от предыдущей схемы — это RC-цепочка, включенная между базами транзисторов мультивибратора. Однако это несложное нововведение позволяет радикально изменить характер генерируемых звуков.

Имитатор кряканья утки

Имитатор кряканья утки (рис. 3), предложенный Е. Бри-гиневичем, как и другие схемы имитаторов, реализован на асимметричном мультивибраторе [Р 6/88-36]. В одно плечо мультивибратора включен телефонный капсюль BF1, а в другое — последовательно соединенные светодиоды HL1 и HL2.

Обе нагрузки работают поочередно: то издается звук, то вспыхивают светодиоды — глаза «утки». Тональность звука подбирается резистором R1. Выключатель устройства желательно выполнить на основе магнитоуправляемого контакта, можно самодельного.

Тогда игрушка будет включаться при поднесении к ней замаскированного магнита.

Рис. 3. Схема имитатора кряканья утки.

Генератор «шума дождя»

Рис. 4. Принципиальная схема генератора "шума дождя" на транзисторах.

Генератор «шума дождя», описанный в монографии В.В. Мацкевича (рис. 4), вырабатывает звуковые импульсы, поочередно воспроизводимые в каждом из телефонных капсюлей. Эти щелчки отдаленно напоминают падение капель дождя на подоконник.

Для того чтобы придать случайность характеру падения капель, схему (рис. 4) можно усовершенствовать, введя, например, последовательно с одним из резисторов канал полевого транзистора. Затвор полевого транзистора будет представлять собой антенну, а сам транзистор будет являться управляемым переменным резистором, сопротивление которого будет зависеть от напряженности электрического поля вблизи антенны.

Электронный барабан-приставка

Электронный барабан — схема, генерирующая звуковой сигнал соответствующего звучания при прикосновении к сенсорному контакту (рис. 5) [МК 4/82-7]. Рабочая частота генерации находится в пределах 50...400 Гц и определяется параметрами RC-элементов устройства. Подобные генераторы могут быть использованы для создания простейшего электромузыкального инструмента с сенсорным управлением.

Рис. 5. Принципиальная схема электронного барабана.

Электронная скрипка с сенсорным управлением

Рис. 6. Схема электронной скрипки на транзисторах.

Электронная «скрипка» сенсорного типа представлена схемой, приведенной в книге Б.С. Иванова (рис. 6). Если к сенсорным контактам «скрипки» приложить палец, включается генератор импульсов, выполненный на транзисторах VT1 и VT2. В телефонном капсюле раздастся звук, высота которого определяется величиной электрического сопротивления участка пальца, приложенного к сенсорным пластинкам.

Если сильнее прижать палец, его сопротивление понизится, соответственно возрастет высота звукового тона. Сопротивление пальца зависит также от его влажности. Изменяя степень прижатия пальца к контактам, можно исполнять незамысловатую мелодию. Начальную частоту генератора устанавливают потенциометром R2.

Электромузыкальный инструмент

Рис. 7. Схема простого самодельного электромузыкального инструмента.

Электромузыкальный инструмент на основе мультивибратора [В.В. Мацкевич] вырабатывает электрические импульсы прямоугольной формы, частота которых зависит от величины сопротивления Ra — Rn (рис. 7). При помощи подобного генератора можно синтезировать звуковую гамму в пределах одной-двух октав.

Звучание сигналов прямоугольной формы очень напоминает органную музыку. На основе этого устройства может быть создана музыкальная шкатулка или шарманка. Для этого на диск, вращаемый ручкой или электродвигателем, наносят по окружности контакты различной длины.

К этим контактам напаивают предварительно подобранные резисторы Ra — Rn, которые определяют частоту импульсов. Длина контактной полоски задает длительность звучания той или иной ноты при скольжении общего подвижного контакта.

Простая цветомузыка на светодиодах

Устройство цветомузыкального сопровождения с разноцветными светодиодами, так называемая «мигалка», украсит музыкальное звучание дополнительным эффектом (рис. 8).

Входной сигнал звуковой частоты простейшими частотными фильтрами разделяется на три канала, условно называемые низкочастотным (светодиод красного свечения); среднечастотным (светодиод зеленого. свечения) и высокочастотным (желтый светодиод).

Высокочастотная составляющая выделяется цепочкой С1 и R2. «Среднечастотная» компонента сигнала выделяется LC-фильтром последовательного типа (L1, С2). В качестве катушки индуктивности фильтра можно использовать старую универсальную головку от магнитофона, либо обмотку малогабаритного трансформатора или дросселя.

В любом случае при настройке устройства потребуется индивидуальный подбор емкости конденсаторов С1 — СЗ. Низкочастотная составляющая звукового сигнала беспрепятственно проходит через цепь R4, СЗ на базу транзистора VT3, управляющего свечением «красного» светодиода. Токи «высокой» частоты закорачиваются конденсатором СЗ, т.к. он имеет для них крайне малое сопротивление.

Рис. 8. Простая цветомузыкальная установка на транзисторах и светодиодах.

Электронная игрушка "угадай цвет" на светодиодах

Электронный автомат предназначен для отгадывания цвета включившегося светодиода (рис. 9) [Б.С. Иванов]. Устройство содержит генератор импульсов — мультивибратор на транзисторах VT1 и VT2, связанный с триггером на транзисторах VT3, VT4. Триггер, или устройство с двумя устойчивыми состояниями, поочередно переключается после каждого из пришедших на его вход импульсов.

Соответственно, поочередно высвечиваются и разноцветные светодиоды, включенные в каждое из плеч триггера в качестве нагрузки. Поскольку частота генерации достаточно высока, мигание светодиодов при включении генератора импульсов (нажатии на кнопку SB1) сливается в непрерывное свечение. Если отпустить кнопку SB1, генерация прекращается. Триггер устанавливается в одно из двух возможных устойчивых состояний.

Поскольку частота переключений триггера была достаточно велика, заранее предсказать, в каком состоянии окажется триггер, невозможно. Хотя из каждого правила есть исключения. Играющим предлагается определить (предсказать), какой именно цвет появится после очередного запуска генератора.

Либо предлагается угадать, какой цвет загорится после отпускания кнопки. При большом наборе статистики вероятность равновесного, равновероятного высвечивания светодиодов должна приблизиться к значению 50:50. Для малого числа попыток это соотношение может не выполняться.

Рис. 9. Принципиальная схема электронной игрушки на светодиодах.

Электронная игрушка "у кого лучше реакция"

Электронное устройство, позволяющее сопоставить скорость реакции двух испытуемых [Б.С. Иванов], может быть собрано по схеме, приведенной на рис. 10. Первым высвечивается индикатор — светодиод того, кто первый нажмет «свою» кнопку.

В основе устройства триггер на транзисторах VT1 и VT2. Для повторного тестирования скорости реакции питание устройства следует кратковременно отключить дополнительной кнопкой.

Рис. 10. Принципиальная схема игрушки "у кого лучше реакция".

Самодельный фототир

Рис. 11. Принципиальная схема фототира.

Светотир С. Гордеева (рис. 11) позволяет не только играть, но и тренироваться [Р 6/83-36]. Фотоэлемент (фотосопротивление, фотодиод — R3) направляют на светящуюся точку или солнечный зайчик и нажимают спусковой крючок (SA1). Конденсатор С1 разряжается через фотоэлемент на вход генератора импульсов, работающего в ждущем режиме. В телефонном капсюле раздается звук.

Если наводка неточна, и сопротивление резистора R3 велико, то энергии разряда недостаточно для запуска генератора. Для фокусировки света необходима линза.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

В настоящее время известно большое число разнообразных по устройству и звучанию электромузыкальных инструментов. О некоторых из них хорошо осведомлены широкие круги радиолюбителей и музыканты, о других знает лишь ограниченный круг специалистов. Есть простейшие инструменты, собранные всего на одном транзисторе, но существуют и такие, которые по сложности своего устройства могут соперничать с электронными вычислительными машинами. В этом параграфе мы будем рассматривать только относительно простые электромузыкальные инструменты, рассчитанные на повторение начинающими радиолюбителями и электромузыкантами. Часть описываемых инструментов больше напоминает собой транзисторизованиые игрушки. Но так или иначе принципы, на которых основано действие этих инструментов, являются основополагающими для более сложных и совершенных инструментов, приборов и средств автоматики.

Электронный орган на однопереходиом транзисторе. Одним из новых и перспективных в любительской практике полупроводниковых приборов является однопереходный транзистор . Наиболее часто подобные транзисторы используют в разного рода задающих генераторах, где частоту генерации можно менять в очень широких пределах путем изменения сопротивления или емкости в цепи эмиттера. Это свойство генераторов на однопереходных транзисторах использовано в простейшем электронном органе, принципиальная схема которого приведена на рис 41. Здесь транзистор Т1 включен в автогенератор электрических колебаний, частота которого изменяется при нажатии какой-либо из клавиш А—3, которые соединяют переменные резисторы R4—R11 с эмиттером однопереходного транзистора Т1. Частоту генерируемых колебаний, а следовательно, тон звучания можно регулировать путем соответствующей подстройки этих резисторов.

«Электронный орган» по схеме рис. 41 не имеет ни усилителя мощности, ни громкоговорителя, необходимого для создания звуковых колебаний. Поэтому его нужно присоединять хотя бы к гнездам для подключения звукоснимателя, имеющимся в каждом радиовещательном приемнике. В качестве транзистора Т1 наиболее подходит отечественный однопереходный транзистор КТ117.

Источником питания могут служить две последовательно соединенные батареи 3336Л. В журнале американских радиолюбителей, где описан этот «электронный орган», указано, что он может быть использован не только как занимательная игрушка, по с большой практической пользой в качестве многоканального сигнального устройства, например электрического звонка. При этом сигналы различаются не по числу звонков, а по тону сигнала, зависящему от нажатия той или иной клавиши.

Электронная канарейка. С давних времен канарейки радуют своим пением любителей природы. Но содержание канареек в домашних условиях требует определенного искусства и терпения. Видимо, по этим причинам в Японии и США появились в продаже искусственные канарейки, внешие очень похожие на настоящих и издающие трели, близкие к пению натуральных канареек. Источником этого пения являются миниатюрные транзисторные генераторы электрических колебаний специальной формы, которые при воспроизведении через динамическую головку имитируют пение настоящих канареек. Электронная канарейка имеет небольшие размеры и размещается в поддоне клетки, внутри которой помещается чучело или муляж птицы.

На рис. 42 приведена принципиальная схема электронной канарейки. Следует указать, что полярность включения электролитического конденсатора С1 указана правильно, так как она в данном устройстве определяется характерными процессами, происходящими в нем, а не полярностью источника питания.

Устройство, показанное на рис. 42, представляет собой блокинг-генератор на транзисторе Т1, время работы которого определяется полупериодом частоты повторения колебаний мультивибратора на транзисторах Т1 и Т2, а частота плавно меняется за время рабочего цикла блокинг-генератора.

Для изготовления канарейки с транзисторным оборудованием по схеме рис. 42 можно использовать транзисторы KT3I5 (Т1) и МП37 или МП38 (Т2). Оригинальные образцы электронных канареек питаются от четырех последовательно соединенных элементов 316 Конденсатор С1 может быть типа К50-6 на рабочее напряжение не менее 10 В. Резистор R8 проволочный, самодельный. Его сопротивление подбирается опытным путем. При этом следует учесть, что с уменьшением этого сопротивления растет выходная мощность, но зато увеличивается влияние параметров громкоговорителя на частоту блокинг-генератора, что нежелательно.

Налаживание устройства несложно и сводится в основном к установке при помощи переменного резистора R7 желаемой частоты повторения трелей. Для удобства эксплуатации электронной канарейки рекомендуется разместить все элементы электронного устройства в пластмассовом корпусе с отверстиями для диффузора динамической головки и оси резистора R7.

Карманная гавайская гитара. Многим знакомо своеобразное звучание музыкальных произведений, исполняемых на гавайских гитарах. Те, кто имеет представление о транзисторной технике, могут сделать себе малогабаритный электромузыкальный инструмент, с помощью которого любое низкочастотное устройство (например, радиоприемник) сможет издавать звуки, весьма близко напоминающие характерное звучание гаванской гитары. Вследствие своей простоты аппарат перекрывает всего две октавы.

В этом, конечно, он уступает настоящей гаванской гитаре, но зато занимает мало места. Собрать и наладить карманную гавайскую гитару может даже начинающий радиолюбитель. На рис. 43 приведена принципиальная схема такой гитары. Она работает следующим образом. Транзисторы Т1 и Т2 образуют задающий генератор, частота которого регулируется переменным резистором R1 («Тон»). Кроме того, она дополнительно модулируется по частоте колебаниями второго генератора на транзисторе Т3 (частота этих колебаний равна 6 Гц).

Модулированное по частоте напряжение задающего генератора, снимаемое с эмиттеров транзисторов Т1 и Т2, поступает через резистор R11 на эмиттер транзистора Т4. База последнего соединена непосредственно с общим проводом питания через резистор R16 и конденсатор С6, а также через резистор R15 и выключатель В1 («Игра») с плюсом питания. Выключатель В1 нормально разомкнут, напряжение смещения на базе транзистора Т4 равно нулю и транзистор Т4 закрыт. В результате выходное напряжение сигнала на коллекторе транзистора Т4 отсутствует.

При включении B1 конденсатор С6 начинает заряжаться через резистор R15, вследствие чего появляется напряжение смещения на базе транзистора Т4. По мере заряда С6 оно начинает увеличиваться, сначала быстро, потом медленно, пока не достигнет своего пре- дела, равного отношению сопротивления резистора R16 к сумме сопротивлений резисторов R15 и R16. Именно в результате плавного изменения смещения на базе транзистора Т4 частотно-модулированные колебания задающего генератора получают специфическую окраску.

Время установления колебаний на выходе устройства зависит от сопротивления резистора R16 и при его значении, указанном на рис. 43, составляет 1,5—2 с. При желании это время можно менять, подбирая номинал резистора R16, который целесообразно заменить переменным сопротивлением 510 кОм.

Резистор R4 регулирует глубину частотной модуляции, т. е. глубину вибраций. На время налаживания его также рекомендуется заменить переменным резистором сопротивлением 510 кОм. Частота модуляции может быть скорректирована путем замены резистора R6 переменным с сопротивлением 2—3 кОм.

Шкалу переменного резистора R1 («Тон») калибруют по музыкальным нотам, начиная от «си», используя в виде эталона настройки пианино или другой музыкальный инструмент. Процесс игры на описываемом «инструменте» несложен. Включают питание, выход устройства соединяют экранированным проводом с гнездами звукоснимателя приемника или со входом специального усилителя НЧ. Далее нажимают кнопку «Игра» и, вращая ручку «Тон», устанавливают желаемую тональность звучания. Громкость его регулируют органами управления усилителя НЧ или приемника, совместно с которыми используется инструмент. Мелодию подбирают, изменяя время нажатия на кнопку «Игра» и одновременно вращая с той или иной скоростью ручку «Тон».

При изготовлении карманной гавайской гитары могут быть использованы транзисторы типа МП40 или МП41 с любыми последующими буквенными индексами. В качестве источника питания целесообразно использовать две последовательно соединенные батареи 3336Л. Все детали инструмента во избежание действия внешних наводок должны быть размещены в металлическом корпусе.

Описанные выше электромузыкальные инструменты с успехом могут быть применены на различных детских концертах, в походах и для художественной самодеятельности. Здесь может оказаться Полезным также еще один электромузыкальный инструмент, описываемый ниже.

Электронный контрабас . Трудно контрабасисту. Его музыкальный инструмент высотой в рост человека ограничивает возможности перемещения исполнителя и пользования общественным транспортом, является темой различных юмористических рассказов. Вспомните, например, рассказ А. П. Чехова «Любовь с контрабасом».

Несмотря на всю свою громоздкость и внешнюю неуклюжесть, контрабас наряду с ударными является одним из ведущих инструментов практически любого эстрадного оркестра.

Но размеры контрабаса можно уменьшить, если выполнить его в виде электронного устройства. Электронный контрабас без труда можно будет брать с собой всюду, где он только потребуется. Для питания такого контрабаса можно использовать малогабаритную гальваническую батарею, а если понадобится озвучить просторные помещения, присоединить его к НЧ тракту обычного приемника или радиолы.

Электронный контрабас не может полностью заменить настоящий хотя бы потому, что он перекрывает только одну октаву, в то время как обычный две с половиной, но зато простота и доступность изготовления, а также небольшие размеры делают его весьма привлекательным для первых опытов с электромузыкальными инструментами.

На рис. 44 даны эскиз внешнего вида и принципиальная схема электронного контрабаса, описанного на страницах радиолюбительского журнала США.

Внешне электронный контрабас представляет собой (рис. 44, а) склеенный из тонких досок стержень с натянутой вдоль его продольной оси единственной металлической струной, перпендикулярно которой размещены 13 узких металлических полосок (ладов). Металлическая струна и лады являются элементами переключателя частот колебаний, генерируемых электронным устройством, показанным на рис. 44,6. Как видно из него, струна и лады соединены проводниками с соответствующими резисторами генератора контрабаса, вследствие чего при замыкании струны на тот или иной лад происходит изменение тональности звучания инструмента. Генератор электронного устройства контрабаса (рис. 44, б) собран на транзисторе Т1 и охвачен отрицательной обратной связью, осуществляемой двойным Т-мостом, состоящим из деталей R1 R2 С3 и С1 С2 R12—R25. Последовательно соединенные подстроечные резисторы R13—R25 включены так, как это показано на рис. 44,6, и в порядке, указанном на рис. 44, а. Струна контрабаса подключена к R25 и общему проводу (земле). Замыкание струны на лады приводит к изменению сопротивления в цепи одного из двух мостов отрицательной обратной связи, что вызывает изменение частоты генерируемых колебаний.

В составе электронного устройства контрабаса имеются еще два каскада. Один, на транзисторе Т2, служит для неискаженного усиления генерируемых колебаний; другой, на транзисторе Т3 — для усиления и сильного искажения сигнала подобно тому, как это сделано в описанных ранее «исказителях». Переключатели В1 и В2 позволяют получить различные режимы работы электронного контрабаса, а именно, когда включен только переключатель B1t на выходе устройства действует чистый неискаженный сигнал. При включении только переключателя В2 на выходе устройства действует сильно искаженный сигнал и, наконец, когда включены оба переключателя (В1 и В2) на выходе действуют гармоники и частично подавленный основной сигнал. Относительные уровни искаженного и неискаженного сигналов устанавливают, подбирая сопротивления резисторов R10 и R7 соответственно.

В устройстве по схеме рис. 44, б могут быть использованы транзисторы типа МП41А или МП42Б с коэффициентом ВСт=40-60 и более, постоянные резисторы типа ВС-0,125 или МЛТ-0,25, МЛТ-0,5, переменные R11 типа СПЗ-3 группы А нли В сопротивлением 20— 30 кОм, R13—R25 типа СПО или СПЗ-4а группы А сопротивлением 1,0—1,5 кОм, конденсаторы типа МБМ на напряжение 160 В. Источником питания могут служить две последовательно соединенные батареи 3336 Л или одна батарея «Крона-ВЦ».

Детали монтируют на двух платах: переменные резисторы R13—R25 — на металлической, транзисторы, конденсаторы и остальные резисторы — на плате из фольгированного текстолита или ге-тинакса. Обе платы устанавливают в корпусе контрабаса с задней стороны его, при этом желательно, чтобы к осям переменных резисторов был свободный доступ. Выход устройства подключают ко входу усилителя НЧ или гнездам звукоснимателя приемника посредством гибкого экранированного кабеля длиной 3—4 м, имеющего на обоих концах однополюсные или унифицированные вилки.

Лады контрабаса изготовляют из латунных или жестяных пластинок шириной 10 мм и располагают в верхней части корпуса инструмента с интервалом 40—50 мм. Общая высота контрабаса (рис. 44, а), включая штырь, должна быть по плечо исполнителю, т. е. примерно 130—150 см.

Налаживание электронного контрабаса начинают с тщательной проверки соединений деталей и проводников, полярности включения батареи. Затем выход устройства подключается ко входу усилителя НЧ и нажатием кнопки Кн1, размещенной в верхней части грифа инструмента, включается питание. Если при этом в громкоговорителе будет слышен звук низкой частоты, громкость которого меняется при вращении ползунка переменного резистора R11, то это будет свидетельствовать о том, что генератор работает. При отсутствии звука необходимо проверить исправность транзисторов и соответствие режимов работы их по постоянному току требуемым значениям. В случае отклонения более чем на ±15% необходимо подобрать сопротивление резистора R3 или заменить транзистор Т1.

Контрабас настраивают на основные тона звучания, включив только переключатель В1 и используя в качестве эталона хорошо настроенный рояль или пианино. Сначала струну прижимают к ладу А, ударяют на рояли по клавише ноты до малой октавы и переменным резистором М13 добиваются одинакового звучания рояля и контрабаса. Затем струну прижимают к последующим ладам в алфавитном порядке и, ударяя на рояли по клавишам нот, перечисленных в табл. 7, ведут соответствующими переменными резисторами дальнейшую настройку контрабаса. Очевидно, что для нее нужно иметь хороший музыкальный слух и знать музыкальную грамоту.

Окончив настройку на основные тона, подбирают такой номинал резистора R7, при котором соединенный с контрабасом усилитель НЧ (или приемником) отдает полную мощность при нахождении ползунка переменного резистора R11 в положении максимума громкости. Затем, не выключая В1 включают переключатель В2 и, подбирая сопротивление резистора R10, добиваются желаемого оттенка звучания электронного контрабаса. Налаживание заканчивают проверкой качества звучания при включении только переключателя В2. Игра на «электронном контрабасе» несложна и доступна многим.

Васильев В. А. Зарубежные радиолюбительские конструкции. М., «энергия», 1977.

Ключевые теги: ,

В последнее время я стал собирать конструкции, которые меня не очень удовлетворяли. Мультивибраторы, стробоскопы и триггеры перестали радовать мой глаз. Я решил "оживить" свои последующие конструкции, добавить в них звук. Эта идея вдохновила меня на создание моей первой конструкции со звуком - сенсорный музыкальный инструмент. Вот его фото:

Схема его на удивление простая - всего восемь деталей, не считая батарейки. Вот их список:
Резистор.....................................................1,5 кОм;
Резистор.....................................................1 кОм;
Резистор.....................................................470 Ом;
Резистор.....................................................10 кОм, переменный;
Транзистор..................................................КТ315Б;
Транзистор..................................................МП42Б;
Конденсатор...............................................100 нФ;
Динамик......................................................сопротивлением звук. катушки 8 Ом;

Теперь, перейдём к самой схеме. Она показана на рисунке:

Работает это устройство по такому принципу:

На транзисторах разной структуры собран несимметричный мультивибратор, нагрузкой которого является динамическая головка. В состоянии, показанном на схеме мультивибратор не работает. Звук в катушке, естественно, отсутствует. Но стоит включить между контактами E1 и E2 резистор, как в динамике зазвучит раздастся звук, тональность которого определяется сопротивлением этого резистора. Питание осуществляется от батарейки 4.5 В, но я взял "крону".

"Инструмент" реагирует на сопротивление от 1 мОм и ниже. Играть можно одним пальцем, или двумя руками. В первом варианте сенсоры надо расположить рядом друг с другом, а во втором на расстоянии.

Устройство можно разместить в корпусе, или сделать навесным монтажом, как это сделал я.

Транзистор КТ315Б заменим на любой из этой серии, а МП42Б можно заменить германиевым транзистором ГТ403Б или кремниевым из серии КТ817.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Биполярный транзистор

КТ315Б

1 В блокнот
Биполярный транзистор

МП42Б

1 В блокнот
Конденсатор 100 нФ 1 В блокнот
Резистор

10 кОм

1 Переменный В блокнот
Резистор

1.5 кОм

1 В блокнот
Резистор

470 Ом

1


В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...