Советские бумажные конденсаторы. Конденсаторы, свойства конденсатора, обозначение конденсаторов на схемах, основные параметры

Накопление и преобразование электрической энергии можно отнести к базовым задачам, которые решают вспомогательные элементы радиоаппаратуры. Конденсатор относится к пассивным компонентам и выступает своего рода емкостью для поступающего заряда. Конструкция стандартных устройств предусматривает наличие пластинчатых электродов, которые разделяются тонкими диэлектриками. Более сложные типы конденсаторов могут содержать несколько электродных слоев, формирующих цилиндрическую намотку. Есть и другие отличительные признаки, обуславливающие возможности применения элементов для той или иной аппаратуры.

Назначение конденсаторов

На сегодняшний день едва ли найдется область радиотехники, в которой бы не использовались данные устройства. Наиболее распространены комбинации конденсаторов с резисторами и катушками индуктивности, участвующие в построении электрических цепей. Такие узлы поддерживают функции частотных фильтров, колебательных контуров и линий с обратной связью. Еще одна их распространенная задача - сглаживание пульсаций напряжения, требуемое во вторичных источниках энергоснабжения. В лазерных установках, системах вспышки и магнитных ускорителях электрический конденсатор используется для выдачи разового заряда с большим показателем мощности. И напротив, электротехнические приборы оснащаются данными элементами с целью компенсации реактивной мощностной энергии. Хотя такие элементы нельзя рассматривать в качестве полноценных емкостных накопителей энергии, в некоторых системах они выступают и как носители информации.

Маркировка устройств

Для визуального определения принадлежности конденсатора к той или иной категории используются специальные обозначения. В первую очередь указывается емкостный потенциал, выражаемый микрофарадами (мкФ). Могут применяться и другие единицы измерения, о чем также будет свидетельствовать соответствующая маркировка. Не всегда отмечается тип используемого в конструкции материала - как правило, без маркировки выпускаются керамические и пленочные неполярные модели. В свою очередь, обозначение танталовых конденсаторов соответствует резисторам - за исключением наличия знака µ и цифр 104 или 107. Такие устройства могут иметь оранжевый, желтый или черный цвет. В знаковой маркировке также указываются размерные параметры и емкость. Высоковольтные и электролитические модели помечаются величиной максимального напряжения, а для переменных конденсаторов указывается диапазон емкости.

Основные характеристики

Главным рабочим параметром является емкость, от которой зависит способность конкретной модели накапливать заряд. Следует разделять номинальную и фактическую емкость, так как на практике использования вторая величина может быть меньше. Диапазон значений по объему может варьироваться от 1 до 50 мкФ, а в некоторых случаях максимум достигает и 10 000 мкФ. Важен и показатель энергетической плотности, во многом определяемый конструкцией изделия. Наибольшей плотностью характеризуются крупноформатные типы конденсаторов, у которых масса обкладки с электролитом существенно превышает вес корпуса. К примеру, при емкости в 10 000 мкФ с напряжением в 0,45 кВт и массой порядка 2 кг плотность может достигать 600-800 Дж/кг. Как раз такие модели выгодно использовать для длительного хранения энергии. Помимо этого, рабочие свойства конденсаторов определяются допуском. Речь идет как раз о погрешности в соотношении показателей реальной и номинальной емкости. Данная величина выражается в процентах и в среднем составляет 20-30 %. В некоторых направлениях радиотехники применяются изделия с 1 % допуска.

Керамические конденсаторы

Это устройства, базирующиеся на дисковых керамических элементах с диэлектриками из титаната бария. Такой конденсатор можно использовать в системах с напряжением до 50 000 В, но важно учитывать, что он имеет минимальную температурную стабильность и широкий спектр изменения емкости. Среди достоинств можно отметить небольшие утечки тока, скромные размеры (при большой емкости заряда) и способность работать на высокой частоте. Что касается назначения, то керамические конденсаторы применяются в цепях с пульсирующим, переменным и постоянным током. Чаще всего используют модели емкостью до 0,5 мкФ. В процессе работы конденсатор этого типа хорошо справляется с внешними нагрузками, среди которых механические удары. Нельзя сказать, что керамический корпус отличается большим эксплуатационным сроком и долговечностью, однако в заявленный период технические свойства поддерживает стабильно.

Полиэстеровые модели

На схемах устройства данного типа обозначаются маркировкой K73-17 или CL21. Их оболочку формирует металлизированная пленка, а для корпуса используется эпоксидный компаунд. Как раз наличие этого наполнителя в конструкции делает полиэстеровые конденсаторы устойчивыми к температурным, физическим и химическим воздействиям. Этот набор эксплуатационных качеств обусловил и широкое распространение конденсаторов типа K73-17 в производстве светотехнических приборов. Средняя емкость устройства составляет 15 мкФ при максимальном напряжении порядка 1500 В. Характеристики скромные, но это не мешает применять конденсатор в тех же цепях с импульсным и переменным током. К тому же и низкая стоимость устройства способствует его популярности на радиорынке.

Конденсатор на основе полипропилена

Тоже вариант относительно недорогого накопителя электрического заряда, который при этом отличается низким коэффициентом потерь и высокой диэлектрической прочностью. К плюсам можно отнести и оптимальную гигроскопичность. То есть один из главных врагов радиоэлементов в виде влажности полипропиленовым конденсаторам не страшен. В качестве изоляторов применяется металлизированная пленка или полоски фольги. В новейших версиях используют и технологию самовосстанавливающейся оболочки, что повышает надежность и долговечность конденсатора.

Устройство может работать на повышенных частотах с сохранением достаточной мощности. Это качество позволяет использовать конденсаторы в системах индукционного обогрева, дополненных водяным охлаждением. Распространено и применение таких элементов в оснастке электромоторов на 220 В. В данном случае они выступают как пусковые компоненты. Эту функцию лучше всего реализуют модели с рабочей емкостью в диапазоне 1-100 мкФ и напряжением в 440 В. Но и это не единственные накопители на синтетической основе. Какие бывают конденсаторы из термопластиков? Внимания заслуживают полисульфоновые и поликарбонатные элементы. Первые отличаются низким влагопоглощением и способностью поддерживать высокое напряжение при температурных перепадах, а вторые в процессе работы демонстрируют оптимальную электротехническую стабильность.

Танталовые конденсаторы

Основу устройства формирует пентоксид тантала с оксидным электролитическим наполнением. Конденсатор отличается высоким отношением емкости к объему, широким спектром поддерживаемых температур и компактностью. Используют такие компоненты в мелком приборостроении, компьютерах и другой вычислительной технике. В этом семействе можно выделить следующие типы конденсаторов: полярные и неполярные, твердотельные, жидкостные. Наиболее привлекательные по эксплуатационным качествам именно твердотельные устройства, так как они характеризуются способностью поддерживать большое напряжение. Однако в условиях критического превышения допустимой величины тока они могут выходить из строя. Емкость танталовых моделей составляет 1000 мкФ, но по сравнению с электролитическими аналогами их собственная индуктивность гораздо ниже, что допускает возможность применения элемента на высоких частотах.

Особенности высоковольтных моделей

Элементы такого типа могут применяться в системах с высокими показателями напряжения, достигающими 15 000 В. При этом емкость у высоковольтных конденсаторов небольшая - порядка 50-100 нФ. В качестве диэлектрического материала чаще используется керамика. Благодаря этой основе выдерживаются большие нагрузки напряжения, а корпус защищает начинку от пробоев пластин.

Распространены и стеклянные вакуумные изделия, также поддерживающие напряжение более 10 000 В. Они представляют собой колбы с концентрическими электродами, в процессе работы обеспечивающими небольшие частотные потери. Применяют высоковольтные конденсаторы такого типа для решения ответственных радиочастотных задач с индуктивным нагревом. Но стоят такие компоненты дороже, отличаются хрупкостью и большими размерами.

Многослойные и однослойные конструкции

Обычно данную классификацию применяют в отношении конденсаторов, выполненных из керамики. Так, однослойные конденсаторы (дисковые) имеют простое устройство, но это не сказывается на уменьшении размеров. В большинстве случаев они массивнее, чем многослойные аналоги. В итоге увеличивается емкость устройства, но крупные размеры все же ограничивают их распространение в отдельных областях.

Что касается многослойных элементов, то они по эксплуатационным качествам в целом схожи с дисковыми, но потенциал накопителей еще выше. Также существенное преимущество заключается в надежности и долговечности. Форм-фактор, в котором выполняются многослойные конденсаторы, делает их менее чувствительными к агрессивным средам, что расширяет область применения. Такие компоненты преимущественно используют в дорогой профессиональной аппаратуре.

Масляные конденсаторы с пропитками

Это отдельная группа радиотехнических элементов, в основе которых находятся бумажные наполнители. Они обрабатываются специальными растворами наподобие воска и эпоксидных смол. Какие бывают конденсаторы масляного типа? Принципиально отличаются модели для постоянного и переменного тока. Первые используются в целях частотной фильтрации, повышения напряжения и устранения электрической дуги. Конденсаторы на масляной пропитке для систем с переменным током применяют в промышленности. Такое устройство располагает большой емкостью и может справляться с большими пиковыми нагрузками. Как правило, его используют в качестве пускового компонента для электромоторов. К дополнительным функциям можно отнести разделение фаз, коррекцию мощности и выравнивание напряжения.

Негативные факторы применения конденсаторов

Одной из главных проблем использования конденсаторов является высокая вероятность взрыва при перегревах, которые происходят из-за больших утечек. Также повысить риск поломки элемента могут близко расположенные радиаторы с высоким тепловым излучением. Какие типы конденсаторов наиболее подвержены взрывам? Чаще всего это происходит с электролитическими устройствами, обеспеченными ненадежными корпусами. Оптимизация конструкции с целью уменьшения размеров изделия заставляет производителей использовать тонкие оболочки, поэтому может иметь место разлет частей конденсатора и разбрызгивание электролита при сильном перегреве или в условиях повышенного внутреннего давления.

Заключение

И простейшие однослойные, и многослойные высоковольтные модели конденсаторов выполняют важные для радиоаппаратуры задачи. Как минимум они корректируют параметры тока, что при схожих размерах не может обеспечить ни один другой технический компонент. В то же время электрический конденсатор вовсе не является идеальным решением, что обуславливает постоянные поиски новых форматов его исполнения. Производители сложной аппаратуры экспериментируют с конструкциями, наполнителями и физическими свойствами, стараясь предлагать оптимальные потребительские качества данного устройства. Среди наиболее важных целевых параметров в этом плане можно назвать устойчивость конденсатора к нагрузкам, широкие рабочие диапазоны, минимальное радиационное воздействие и высокий срок службы.

Электрические конденсаторы являются средством накопления электроэнергии в электрическом поле. Типичными областями применения электрических конденсаторов являются сглаживающие фильтры в источниках электропитания, цепи межкаскадной связи в усилителях переменных сигналов, фильтрация помех, возникающих на шинах электропитания электронной аппаратуры и т д.

Электрические характеристики конденсатора определяются его конструкцией и свойствами используемых материалов.

При выборе конденсатора для конкретного устройства нужно учитывать следующие обстоятельства:

а) требуемое значение емкости конденсатора (мкФ, нФ, пФ),

б) рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров),

в) требуемую точность (возможный разброс значений емкости конденсатора),

г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),

д) стабильность конденсатора,

е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.)

В табл. 1 - 3 приведены основные характеристики конденсаторов различных типов.

Таблица 1. Характеристики керамических, электролитических конденсаторов и конденсаторов на основе металлизированной пленки

Параметр конденсатора Тип конденсатора
Керамический Электролитический На основе металлизированной пленки
От 2,2 пФ до 10 нФ От 100 нФ до 68 мкФ 1 мкФ до 16 мкФ
± 10 и ± 20 -10 и +50 ± 20
50 - 250 6,3 - 400 250 - 600
Стабильность конденсатора Достаточная Плохая Достаточная
От -85 до +85 От -40 до +85 От -25 до +85

Таблица 2. Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена

Параметр конденсатора Тип конденсатора
Слюдяной На основе полиэстера На основе полипропилена
Диапазон изменения емкости конденсаторов От 2,2 пФ до 10 нФ От 10 нФ до 2,2 мкФ От 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), % ± 1 ± 20 ± 20
Рабочее напряжение конденсаторов, В 350 250 1000
Стабильность конденсатора Отличная Хорошая Хорошая
Диапазон изменения температуры окружающей среды, о С От -40 до +85 От -40 до +100 От -55 до +100

Таблица 3. Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторов От 10 нФ до 10 мкФ От 10 пФ до 10 нФ От 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), % ± 20 ± 2,5 ± 20
Рабочее напряжение конденсаторов, В 63 - 630 160 6,3 - 35
Стабильность конденсатора Отличная Хорошая Достаточная
Диапазон изменения температуры окружающей среды, о С От -55 до +100 От -40 до +70 От -55 до +85

Керамические конденсаторы применяются в разделительных цепях, электролитические конденсаторы используются также в разделительных цепях и сглаживающих фильтрах, а конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Слюдяные конденсаторы используются в звуковоспроизводящих устройствах, фильтрах и осцилляторах. Конденсаторы на основе полиэстера - это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Конденсаторы на основе поликарбоната используются в фильтрах, осцилляторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются также во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.

Небольшие замечания и советы по работе с конденсаторами

Всегда нужно помнить, что рабочие напряжения конденсаторов следует уменьшать при возрастании температуры окружающей среды, а для обеспечения высокой надежности необходимо создавать большой запас по напряжению .

Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому конденсаторы всегда работают с определенным запасом надежности. Тем не менее нужно обеспечивать их реальное рабочее напряжение на уровне 0,5-0,6 разрешенного значения.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.

Конденсаторы большой емкости с малыми токами утечки способны довольно долго сохранять накопленный заряд после выключения аппаратуры. Для обеспечения большей безопасности следует в цепь разряда подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

В высоковольтных цепях часто используется последовательное включение конденсаторов. Для выравнивания напряжений на них нужно параллельно каждому конденсатору подключить резистор сопротивлением от 220к0м до 1 МОм.

Рис. 1 Использование резисторов для выравнивания напряжений на конденсаторах

Керамические проходные конденсаторы могут работать на очень высоких частотах (свыше 30 МГц) . Их устанавливают непосредственно на корпусе прибора или на металлическом экране.

Неполярные электролитические конденсаторы имеют емкость от 1 до 100 мкФ и рассчитаны на 50 В. Кроме того, они дороже обычных (полярных) электролитических конденсаторов.

При выборе конденсатора фильтра источника электропитания следует обращать внимание на амплитуду импульса зарядного тока, который может значительно превосходить допустимое значение . Например, для конденсатора емкостью 10 000 мкФ эта амплитуда не превышает 5 А.

При использовании электролитического конденсатора в качестве разделительного необходимо правильно определить полярность его включения . Ток утечки этого конденсатора может влиять на режим усилительного каскада.

В большинстве случаев применения электролитические конденсаторы взаимозаменяемы . Следует лишь обращать внимание на значение их рабочего напряжения.

Вывод от внешнего слоя фольги полистиреновых конденсаторов часто помечается цветным штрихом. Его нужно присоединять к общей точке схемы.

Рис. 2 Эквивалентная схема электрического конденсатора на высокой частоте

Цветовая маркировка конденсаторов

На корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка.

Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М - 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.

Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах.

(288 кб)

Пример. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора - 10 000 пФ.

Пример. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.

Свойства конденсатора

Конденсатор не пропускает постоянный ток и является для него изолятором.

Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Свойство конденсатора оказывать разное сопротивление переменному току нашло широкое применение. Конденсаторы используют для фильтрации, отделения одних частот от других, отделения переменной составляющей от постоянной…

Из чего делают конденсаторы

Простейший конденсатор состоит из 2-х металлических пластин (обкладок), разделённых изолятором (диэлектриком). Если одну обкладку конденсатора зарядить положительно, а другую отрицательно, то разноимённые заряды, притягиваясь друг к другу, будут удерживаться на обкладках. Поэтому конденсатор может быть накопителем электрической энергии.

Обкладки конденсатора обычно изготавливают из алюминия, меди, серебра, тантала. В качестве диэлектрика применяют специальную конденсаторную бумагу, слюду, синтетические плёнки, воздух, специальную керамику и т.п.

Если использовать обкладки из фольги и многослойный пленочный диэлектрик, то можно изготовить конденсаторы рулонного типа, у которых удельная аккумулирующая способность находится приблизительно в пределах от 0,1 J/kg до 1 J/kg или от 0,03 mWh/kg до 0,3 mWh/kg. Из-за малой удельной аккумулирующей способности конденсаторы такого вида не подходят для длительного сохранения существенного количества энергии, но они широко применяются как источники реактивной мощности в цепях переменного тока и как емкостные сопротивления. Значительно более эффективно энергия может аккумулироваться в электролитических конденсаторах, принцип устройства которых изображен на рис. 2.

1 металлический лист или фольга (алюминий, тантал или др.),
2 диэлектрик из окиси металла (Al2O3 , Ta2O5 или др.),
3 бумага и т. п., пропитанная электролитом (H3BO3 , H2SO4 , MnO2 или др.) и глицерином.Так как толщина слоя диэлектрика в этом случае обычно остается в пределах 0,1 µm, то эти конденсаторы могут изготовляться с очень большой емкостью (до 1 F), но на относительно малое напряжение (обычно на несколько вольт).

Еще большую емкость могут иметь ультраконденсаторы (супер-конденсаторы, ионисторы), обкладками которых служит двойной электрический слой толщиной в несколько десятых долей нанометра на границе раздела электрода, изготовленного из микропористого графита, и электролита (рис. 3).

1 электроды из микропористого графита,
2 электролит


Эффективная площадь обкладок таких конденсаторов достигает, благодаря пористости, до 10 000 m2 на каждый грамм массы электродов, что позволяет достигать очень большой емкости при очень малых размерах конденсатора. В настоящее время ультраконденсаторы выпускаются на напряжение до 2,7 V и емкостью до 3 kF. Их удельная аккумулирующая способность находится обычно в пределах от 0,5 Wh/kg до 50 Wh/kg и имеются опытные образцы с удельной аккумулирующей способностью до 300 Wh/kg.
Выгодны они тогда, когда энергия потребляется в виде коротких импульсов (например, для питания стартера двигателей внутреннего сгорания) или когда требуется быстрая (секундная) зарядка аккумулирующего устройства. Например, в 2005 году в Шанхае началась опытная эксплуатация ультраконденсаторных автобусов, батарея конденсаторов которых заряжается во время стоянки автобуса на каждой остановке.

При выборе конденсатора для конкретного устройства нужно учитывать следующие обстоятельства:

а) требуемое значение емкости конденсатора (мкФ, нФ, пФ),

б) рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров),

в) требуемую точность (возможный разброс значений емкости конденсатора),

г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),

д) стабильность конденсатора,

е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.)

Применение

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от лейденской банки, которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой – станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Конденсаторы - это не только элементы радио и электрических цепей. В природе мы встречаемся с естественными конденсаторами во время грозы, когда разноимённо заряженные облака разряжаются относительно друг друга или земли. Образуется молния и гремит гром.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для создания симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др. 1.В радиотехнической и телевизионной аппаратуре – для создания колебательных контуров, их настройки, блокировки, разделения цепей с различной частотой, в фильтрах выпрямителей и т.д.

2.В радиолакационной технике – для получения импульсов большей мощности, формирования импульсов и т.д.

3. В телефонии и телеграфии – для разделения цепей переменного и постоянного токов, разделения токов различной частоты, искрогашения в контактах, симметрирования кабельных линий и т.д.

4. В автоматике и телемеханике – для создания датчиков на емкостном принципе, разделения цепей постоянного и пульсирующего токов, искрогашения в контактах, в схемах тиратронных генераторов импульсов и т.д.

5. В технике счетно-решающих устройств – в специальных запоминающих устройствах и т.д.

6. В электроизмерительной технике – для создания образцов емкости, получения переменной емкости (магазины емкости и лабораторные переменные конденсаторы), создания измерительных приборов на емкостном принципе и т. д.

7. В лазерной технике – для получения мощных импульсов.

В современной электроэнергетике конденсаторы находят себе также весьма разнообразное и ответственное применение:

для улучшения коэффициента мощности и промышленных установок (косинусные или шунтовые конденсаторы);

для продольной емкости компенсации дальних линий передач и для регулирования напряжения в распределительных сетях (серийные конденсаторы);

для емкостного отбора энергии от линий передач высокого напряжения и для подключения к линиям передач специальной аппаратуры связи и защитной аппаратуры (конденсаторы связи);

для защиты от перенапряжений;

для применения в схемах импульсов напряжения (ГИН) и генераторов мощных импульсов тока (ГИТ), используемых при испытаниях электротехнической аппаратуры;

для электрической сварки разрядом;

для пуска конденсаторных электродвигателей (пусковые конденсаторы) и для создания нужного сдвига фаз в дополнительной обмотке этих двигателей;

в устройствах освещения люминесцентными лампами;

для подавления радиопомех, создаваемых электрическими машинами и подвижным составом электрифицированного транспорта.

Кроме электроники и электроэнергетики, конденсаторы применяют и в других неэлектротехнических областях техники и промышленности для следующих основных целей:

В металлопромышленности - в высокочастотных установках для плавки и термической обработки металлов, в электроэрозионных (электроискровых) установках, для магнитоимпульсной обработки металлов и т.д.

В добывающей промышленности (угольной, металлорудной и т.п.) – в рудничном транспорте на конденсаторных электровозах нормальной и повышенной частоты (бесконтактных), в электровзрывных устройствах с использованием электрогидравлического эффекта и т.д.

В автотракторной технике – в схемах зажигания для искрогашения в контактах и для подавления радиопомех.

В медицинской технике – в рентгеновской аппаратуре, в устройствах электротерапии и т.д.

В технике использования атомной энергии для мирных целей – для изготовления дозиметров, для кратковременного получения больших токов и т.д.

В фотографической технике – для аэрофотосъемки, получения вспышки света при обычном фотографировании и т.д.

Разнообразие областей применения обусловливает исключительно большое разнообразие типов конденсаторов, используемыз современной техникой. Поэтому наряду с миниатюрными конденсаторами, имеющими вес менее грамма и размеры порядка нескольких миллиметров, можно встретить конденсаторы с весом в несколько тонн и по высоте превышающие человеческий рост. Емкость современных конденсаторов может составлять от долей пикофарады до нескольких десятков и даже сотен тысяч микрофарад в единице, а номинальное рабочее напряжение может лежать в пределах от нескольких вольт до нескольких сотен киловольт.

Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое

В советское время, когда многие стационарные электронные часы питались от розетки, а компактные и дешевые аккумуляторы еще не изобрели, умельцы ставили туда конденсаторы, чтобы при пропадании электроэнергии, например кратковременном, они могли работать и не сбить свой ход.

§ 1.1. Функции и области применения


Электрические конденсаторы в электрон-

ных, радиотехнических, электротехнических

и электроэнергетических устройствах выпол-

няют функции накопителя энергии, источ-

ника реактивной мощности, частотно-зави-

симого реактивного сопротивления. Осуще-

ствляют они это благодаря своей способ-

ности накапливать электрическую энергию,

а затем отдавать ее в нагрузочную цепь.

Импульсы тока большой мощности ис-

пользуются для создания экстремальных

по напряженности магнитных полей и мощ-

ных дуговых разрядов в газах и жидко-

Импульсы высокого и сверхвысокого

напряжений применяются в технике высо-

ких напряжений в испытательных и иссле-

довательских целях.

Емкостные накопители энергии исполь-

зуются в установках для исследования

физики плазмы, термоядерных реакций, ис-

пытаний различного оборудования, в элект-

ротехнологических устройствах (магнитно-

импульсная штамповка, установки, исполь-

зующие электрогидравлический удар, им-

пульсная электросварка, намагничивание,

ультразвуковая технология, электроискро-

вая технология обработки, электроплазмо-

лиз и т. д.). Накопительные конденсаторы

широко используются в различных устрой-

ствах импульсной связи, радиолокации,

навигации, в импульсных источниках све-

та (высокоинтенсивные источники - лам-

пы-вспышки, сигнальные установки - мая-

ки, оптические квантовые генераторы - ла-

зеры и т. д.), импульсной рентгеновской

Конденсаторы применяются в технике

сейсморазведки (электродинамическое им-

пульсное возбуждение упругих волн в зем-

ной коре), для подрыва детонаторов, в ме-

дицине (импульсный дефибриллятор)

Накопители для генераторов мощных им-

пульсов тока могут быть простейшими (в

виде конденсатора или батарей конденса-

торов) и более сложными (искусственные

длинные линии, например, цепочный фор-

мирователь, либо набор параллельных LC-

формирователей).

В них конденсаторы относительно дол-

го накапливают электрическую энергию от

сравнительно маломощного источника, а

затем быстро отдают ее в нагрузку. Нако-

пительные конденсаторы используются, в

частности, в днодно-конденсаторных умно-

жителях напряжения.

Основным рабочим процессом в ряде

устройств с емкостным накоплением энер-

гии является не отдача ее в нагрузку, а

накопление. Способность конденсатора

быстро накапливать электрическую энер-

гию используется при создании различных

устройств для защиты электрического обо-

рудования и его элементов от перенапря-

жений, обусловленных грозовыми или ком-

мутационными явлениями. Это свойство, а

также сравнительно малые габариты, вы-

сокая надежность конденсаторов обусло-

вили, в частности, их широкое использова-

ние в демпфирующих цепях мощных

высоковольтных преобразователей, для вы-

равнивания напряжений на последователь-

но включенных вентилях.

В тиристорных преобразователях (вы-

прямителях, инверторах, импульсных регу-

ляторах), в бесконтактной коммутацион-

ной аппаратуре конденсаторы применяют

для принудительного включения и выклю-

чения диодов и вентилей с неполной управ-

ляемостью. Коммутирующие конденсаторы

в бесконтактных аппаратах работают в

накопительном режиме, тогда как в пре-

образователях рабочими процессами обыч-

но являются заряд и разряд (или пере-

заряд) конденсатора.

Свойство конденсатора накапливать

электрическую энергию широко применяет-

ся и для подавления импульсных помех в

различном электронном оборудовании, для

создания ячеек памяти ЭВМ, интегрирова-

ния и дифференцирования электрических

сигналов (аналоговые ЭВМ, системы ав-

томатики, управления и т. д.).

Широко используются накопительные

свойства конденсаторов при их применении

в разнообразных импульсных устройствах

малой мощности: в генераторах импульсов

тока и напряжения специальной формы

(развертывающие, измерительные устройст-

ва н т. д.). в автоколебательных и спуско-

вых устройствах. Конденсаторы очень час то служат источником реактивной мощ-

ности. Это свойство проявляется тогда,

когда на них воздействует переменное

(обычно синусоидальное по форме) напря-

жение. Ток, протекающий через конденса-

тор, опережает напряжение на угол, близ-

кий к π/2, т. е. конденсатор, почти не по-

требляя активную мощность, генерирует

реактивную. Эта способность используется

для повышения коэффициента мощности

потребителей электрической энергии путем

частичной или полной компенсации их

реактивной мощности, что снижает потери

энергии в генераторах, трансформаторах,

электрических сетях, повышает устойчи-

вость параллельной работы энергосистем,

стабилизирует напряжение у потребителей.

Для повышения устойчивости парал-

лельной работы и пропускной способности

линий электропередачи, а также для улуч-

шения режима работы энергосистем при-

меняют установки продольной компенса-

ции, главным элементом которых являют-

ся мощные батареи конденсаторов, осуще-

ствляющие компенсацию индуктивных

сопротивлений высоковольтных линий

электропередачи. Установки продольной

компенсации реактивной мощности исполь-

зуются на электрифицированных железных

В последнее время батареи конденсато-

ров продольной компенсации стали приме-

няться для руднотермнческих плавильных

печей большой мощности (тысячи и десят-

ки тысяч киловатт), т. е. при резко пере-

менной нагрузке.

Продольная емкостная компенсация

реактивной мощности эффективно исполь-

зуется для пуска асинхронных машин

большой мощности при их питании по ли-

ниям с большим сопротивлением (линии

недостаточной мощности и относительно

большой длины). В энергосистемах кон-

денсаторы применяются в батареях как

продольной, так и поперечной централизо-

ванной компенсации реактивной мощности.

Они обеспечивают снижение потерь энер-

гии и улучшают режимы работы энерго-

систем (совместно с электростанциями

обеспечивают необходимые напряжения в

узлах и потоки энергии). В обоих видах

батарей используется последовательно-па-

раллельное соединение большого числа

единичных конденсаторов.

Конденсаторы широко применяются не

только в установках централизованной

компенсации реактивной мощности, но и в

установках для групповой и индивидуаль-

ной компенсации. Такими примерами мо-

гут служить конденсаторы для светильни-

ков с газоразрядными лампами, пусковые

и рабочие конденсаторы однофазных асин-

хронных электродвигателей (в этом случае

основная функция конденсаторов заключа-

ется в создании фазового сдвига π/2

между токами обмоток двигателей), кон-

денсаторы, повышающие очень низкий

коэффициент мощности индукционных

электротермических установок промышлен-

ной и повышенных частот. Групповая и

индивидуальная компенсация реактивной

мощности потребителей дает большой эко комический эффект в связи со снижением

потерь энергии при ее передаче, уменьше-

нием посадки напряжения при пиковых

реконструкции энергетических сетей (из-за

недостаточной мощности питающих линий,

трансформаторов и т. д.).

Способность конденсаторов компенси-

ровать реактивную мощность потребителей

электроэнергии применяется не только на

частоте 50-6 0 Гц, но и на повышенных

частотах работы, например, бортовых сис-

тем транспортных средств, электротермиче-

ских установок. В этом случае существен-

но снижаются масса и габариты первично-

го генератора электроэнергии.

Компенсация конденсаторами реактив-

ной мощности асинхронной машины позво-

ляет создавать асинхронные генераторы,

эффективные при переменной скорости вра-

щения первичного двигателя (гидравличе-

ские, газовые турбины). В них конденсато-

ры обеспечивают возбуждение магнитного

потока и компенсацию реактивной мощ-

ности нагрузки.

Полная компенсация конденсаторами

реактивной мощности катушек индуктив-

ностей происходит также в мощных коле-

бательных контурах генераторов радиопе-

редатчиков. Без конденсаторов невозможна

работа этих устройств с высоким коэффи-

циентом полезного действия и малыми ис-

кажениями, а также генерирование боль-

ших активных мощностей.

Другое свойство конденсаторов - изме-

нять свое реактивное сопротивление при

переменном токе обратно пропорционально

частоте (x с =1/2 π / С)-широк о использу-

ется при создании различных фильтров в

радиотехнических, электронных, электро-

технических устройствах, служащих для

разделения напряжений и токов различных

Фильтры низких, высоких частот, поло-

совые и режекторные, представляющие со-

бой комбинацию индуктивных и емкостных,

резистнвных и емкостных элементов, явля-

ются неотъемлемыми узлами большинства

электронных и радиотехнических устройств.

Фильтры используются также в энергети-

ческих системах. С их помощью маломощ-

ные высокочастотные сигналы, применяе-

мые для связи, телемеханики, систем про-

тивоаварийной автоматики и других целей,

отделяются от напряжений промышленной

частоты высокого напряжения. Силовые

фильтры используются в электроэнергети-

ке для приближения формы напряжения к

синусоидальной при наличии источников

высших гармоник (выпрямителей), дуго-

вых печей и др.), в силовых полупровод-

никовых преобразователях, работающих в

автономном или в ведомом сетью режиме.

В реактивных фильтрах, резонансных

умножителях напряжения и других устрой-

ствах используются резонансные свойства

цепей, состоящих из конденсаторов к ии-

дуктнвностей.

Конденсаторы применяются в фильтрах

не только переменного, но н постоянного

тока, в которых полезной составляющей

является постоянное напряжение, а задача

фильтра заключается в сглаживании пуль

саций напряжения (путем снижения пере-

менной составляющей), т. е. здесь одно-

временно используется способность кон-

денсатора накапливать энергию и снижать

свое сопротивление с частотой. Такие

фильтры применяются в блоках питания

различных электронных и электротехни-

ческих устройств, например, в высоковольт-

ных установках электростатической окрас-

ки, очистки газов, в импульсных стабилиза-

торах напряжения, ЭВ М и др.

Свойство конденсаторов снижать свое

сопротивление с ростом частоты обуслав-

ливает их широкое использование в элект-

ронной и радиоэлектронной аппаратуре в

качестве блокирующего или помехоподав-

ляющего элемента. Роль конденсатора в

этом и в предыдущем случаях заключает-

ся в том, чтобы замкнуть путь высокочас-

тотных токов, не допустив их прохожде-

ния через другие цепи и элементы уст-

ройств, например в питающую сеть.

Конденсаторы являются неотъемлемым

элементом фазосдвигающих цепей элект-

ронных устройств систем автоматики, уп-

равления, в LC- и RС-генераторах, в ак-

тивных фильтрах и т. д.

Одна из многочисленных задач, решае-

мых с помощью конденсаторов, заключает-

ся в делении переменного напряжения,

осуществляемого при различных изменени-

ях в высоковольтных цепях, в электроэнер-

гетических системах, испытательных уста-

новках, в равномерном распределении на-

пряжения на разрывных промежутках воз-

душных высоковольтных выключателей и

для других целей.

Конденсаторы широко используются:

В емкостных делителях напряжения

для отбора энергии от высоковольтных ли-

ний электропередачи (при небольших мощ-

ностях стоимость конденсаторного отбора

ниже стоимости устройства отбора энергии

с помощью обычных трансформаторов);

Как балластное сопротивление в лю-

минесцентных источниках света, лампах

накаливания, а также в маломощных ус-

тройствах для зарядки аккумуляторов;

Во вторичных источниках питания со

специальными характеристиками (стабили-

заторы тока, напряжения), в частности, в

индуктивно-емкостных преобразователях,

служащих для питания неизменным током

установок плазменной технологии, сварки

Индуктивно-емкостные устройства при-

меняются и для симметрирования напря-

жений трехфазной сети при наличии несим-

метричных потребителей, а также для соз-

дания расщепителей числа фаз, необходи-

мых для питания трехфазных потребителей

от однофазной сети.

Таким образом, область применения

конденсаторов достаточно широка: энерге-

тика, промышленность, транспорт, устрой-

ства связи, автоматика, вещание, локация,

измерительная и вычислительная техника

Справочник

по электрическим

конденсаторам

Общие сведения,

выбор и применение

Под общей редакцией

кандидата технических наук

В. В. Ермуратског о

  • Перевод

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.


Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические


Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические



Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика


История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

В электронике используется множество различных деталей, которые вместе позволяют осуществлять целый ряд действий. Одной из них является конденсатор. И в рамках статьи будет вестись речь о том, что это за механизм, как работает, для чего нужен конденсатор и что он делает в схемах.

Что называется конденсатором?

Конденсатор - это пассивное электрическое устройство, которое в схемах может выполнять различные задачи благодаря умению копить заряд и энергию электрического поля. Но главный спектр применения - это в фильтрах выпрямителей и стабилизаторов. Так, благодаря конденсаторам осуществляется передача сигнала между усилительными каскадами, задаются временные интервалы для выдержки времени, строят фильтры высоких и низких частот. Благодаря своим свойствам он также используется для подборки частоты в разных генераторах.

Данный вид конденсаторов может похвастаться емкостью, которая составляет несколько сотен микрофарад. По подобному принципу устроены и другие представители семейства этой детали электроники. А как проверить конденсатор и убедиться, что реальное положение дел соответствует надписям? Наиболее простой способ - воспользоваться цифровым мультиметром. Также ответ на вопрос, как проверить конденсатор, может дать омметр.

Принцип действия и для чего нужен конденсатор

Из обозначения и схематического изображения можно сделать заключение, что в качестве простейшего конденсатора могут выступить даже две металлические пластины, расположенные рядом. В качестве диэлектрика при этом справится воздух. Теоретически нет никакого ограничения на площадь пластин и расстояние между ними. Поэтому даже при разводе на огромные расстояния и уменьшении их размера, пускай и незначительная, но какая-то емкость сохраняется.

Такое свойство нашло использование в высокочастотной технике. Так, их научились делать даже в виде обычных дорожек печатного монтажа, а также просто скручивая два провода, которые находятся в полиэтиленовой изоляции. При использовании кабеля емкость конденсатора (мкф) увеличивается вместе с длиной. Но следует понимать, что если передаваемый импульс короткий, а провод длинный, то он может просто не дойти до точки назначения. Может использоваться конденсатор в цепи постоянного и переменного тока.

Накопление энергии

При увеличении емкости конденсатора такие процессы, как заряд и разряд протекают медленно. Напряжение на данном электрическом устройстве растёт по кривой линии, которая в математике называется экспонентой. Со временем напряжение конденсатора увеличится от значения в 0В до уровня источника питания (если не перегорит из-за слишком высоких значений последнего).

Электролитический конденсатор

На данный момент самой большой удельной емкостью при соотношении этого показателя и объема детали могут похвастаться электролитические конденсаторы. Их показатель вместимости достигает значений в 100 тысяч микрофарад, а рабочее напряжение до 600 В. Но работают они хорошо исключительно на низких частотах. Для чего нужен конденсатор такого типа? Основная сфера применения - фильтры Электролитические конденсаторы в схемы всегда включаются с соблюдением полярности. Электроды делают из тонкой пленки (которая сделана из оксида металлов). Так как тонкий слой воздуха между ними не является достаточно хорошим изолятором, то также сюда добавляется слой электролита (в качестве него выступают концентрированные растворы щелочей или кислот).

Суперконденсатор

Это новый класс электролитических конденсаторов, который называют ионисторами. Его свойства делают его похожим на аккумулятор, хотя и накладываются определённые ограничения. Так, их преимущество заключается в коротком времени заряда (обычно несколько минут). Для чего нужен конденсатор такого типа? Ионисторы используются как резервные источники питания. При изготовлении они получаются неполярными, и где плюс, а где минус, определяется первой зарядкой (на заводе-производителе).

Значительное влияние на работоспособность оказывает температура и номинальное напряжение. Так, при 70˚C и 0,8 мощности дадут только 500 часов работы. При уменьшении напряжения до 0,6 от номинала, а температуры до 40 градусов срок его службы увеличится до 40 тысяч часов. Найти ионисторы можно в микросхемах памяти или электронных часах. Но вместе с этим имеют неплохие перспективы их использования в солнечных батареях.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...