Виды com портов. Что такое COM-порт

Serial port (серийный порт, последовательный порт или COM-порт -, communications port) — это последовательный интерфейс с двойной направленностью.

Почему порт назвается последовательным? Потому, что вся информация по этому порту передается шагом равным одному биту. В нем данные передаются бит за битом, в отличие от параллельного порта.

Несмотря на то, что в некоторых других интерфейсах как, например, в Ethernet , FireWire и USB , применяется последовательный обмен данными, название «последовательный порт» закрепилось за портом, обладающим стандартом RS-232C .

Данный порт, в сравнении с другими "последовательными" технологиями, обладает отличительной особенностью: в нем отсутствует какое-либо временное требование между 2 байтами. Временные требования существуют только между битами одного байта. Величина, обратная временной паузе между битами одного байта, носит название «baud rate» (скорость передачи). Кроме того, в данной технологии нет такого понятия, как "пакет". Другие технологии "последовательной" передачи данных (X.25, USB или Ethernet), используют "пакеты", также в них существуют и жесткие временные требования между битами одного пакета.

В части протоколов связи с индустриальным оборудованием имеются жесткие временные требования между байтами последовательного порта. Реализация в многозадачных операционных системах со слабой поддержкой реального времени этих протоколов очень сложна. К этим системам относятся и Windows. Вот почему для работы с этими протоколами зачастую применяют MS-DOS или более устаревшее программное обеспечение.

Самый распространенный для последовательного порта стандарт - RS-232C. Ранее последовательный порт применялся для подключения терминала, позднее его использовали для подключения модема или мыши. В настоящее время его применяют в качестве средства соединения с источниками бесперебойного питания, а также в качестве средства связи с аппаратными средствами разработки встраиваемых вычислительных систем, спутниковыми ресиверами, кассовыми аппаратами и приборами систем безопасности.

Благодаря COM-порту появляется возможность подключить друг к другу два ПК, применяя так называемый «нуль-модемный кабель». Данный метод использовался со времен MS-DOS в целях перекачки файлов с одного компьютера на другой. В UNIX-системах он использовался для терминального доступа к другой машине, а в операционных системах Windows - для отладчика уровня ядра.

Довольно популярный в свое время в IBM-совместимых ПК последовательный порт, сегодня уже морально устарел. Однако, следует отметить, что он еще нередко используется в промышленном и узкоспециальном оборудовании, а также на некоторых современных компьютерах. Последовательный порт активно вытесняется интерфейсом USB и FireWire.

Однако имеются специальные стандарты эмуляции последовательного порта над USB и над Bluetooth . Кстати, любопытно, но именно Bluetooth-технология проектировалась разработчиками в качестве беспроводной версии последовательного порта. Программная эмуляция порта широко используется и по сей день. Так, практически все мобильные телефоны сегодня эмулируют внутри себя COM-порт и модем, с целью реализации тетеринга (доступа компьютера к сети Интернет через GPRS/EGDE/3G). А вот непосредственно для физического подключения к компьютеру применяется USB, Bluetooth или Wi-Fi технологии.

Кроме того, программная эмуляция последовательного порта возможна для гостевых пользователей виртуальных машин VMWare и Microsoft Hyper-V. Основной целью данной процедуры является подключение отладчика уровня ядра Windows к гостевому клиенту.

Достоинства COM-порта

Главное преимущество данной технологии состоит в простоте подключения.

Недостатки COM-порта

Главными недостатками данного порта являются его низкая скорость, большие размеры разъемов, а также высокие требования к времени отклика операционной системы. Также, в данном стандарте наблюдается высокое количество прерываний (одно прерывание на каждые 8 байт).

Разъемы

Самыми распространенными разъемами стандарта являются 9-ти и 25-ти контактные (DB-9 и DB-25, соответственно), которые были стандартизированы в 1969 году. Это D-образные разъемы. Помимо них использовались и другие, но из этого же семейства: DB-31 и круглые восьмиконтактные DIN-8.

Максимальная скорость передачи (в обычном исполнении) достигает 115 200 бод.

Аппаратура

Разъем обладает следующими контактами:

  • DTR (Data Terminal Ready) - выход на ПК, вход - на модеме. Отвечает за готовность компьютера к работе с модемом. Сброс вызывает почти полную перезагрузку модема. В случае с мышью, данный провод используется для осуществления питания.
  • DSR (Data Set Ready) - вход на ПК, выход - на модеме. Отвечает за готовность модема. Если линия в нуле, то в некоторых операционных системах невозможно открыть порт в качестве файла.
  • RxD (Receive Data) - вход на ПК, выход - на модеме. Обозначает поток входящих в ПК данных.
  • TxD (Transmit Data) - выход на ПК, вход - на модеме. Обозначает поток исходящих от ПК данных.
  • CTS (Clear to Send) - вход на ПК, выход - на модеме. Компьютер должен приостановить процесс передачи данных, пока данный провод не будет выставлен в единицу. Применяется в аппаратном протоколе управления потоком в целях недопущения переполнения на модеме.
  • RTS (Request to Send) - выход на ПК, вход - на модеме. Модем должен приостановить процесс передачи данных, до тех пор, пока провод не будет выставлен в единицу. Применяется в аппаратном протоколе управления потоком в целях недопущения переполнения в оборудовании/драйвере.
  • DCD (Carrier Detect) - вход на ПК, выход - на модеме. После установления связи с модемом с той стороны возводится в единицу, сбрасывается в ноль, в случае разрыва связи. Аппаратура ПК может производить прерывание, в случае наступления подобного события.
  • RI (Ring Indicator) - вход на ПК, выход - на модеме. После детерминации вызывного сигнала телефонного звонка, возводится модемом в единицу. Аппаратная часть ПК может производить прерывание, в случае наступления подобного события.
  • SG (Signal Ground) - общий сигнальный провод порта. Важно: земля - не общая . Обычно провод имеет изоляцию от корпуса ПК или модема.

В нуль-модемном кабеле применяются две перекрещенные пары: TXD/RXD и RTS/CTS.

UART 16550 - стандартная аппаратура порта. Сегодня включена в SuperIO микросхему на материнской плате. Со времен IBM PC, она оснащена аппаратной очередью байтов. Она существенно снижает число возникающих прерываний.

Параллельный порт обеспечивает довольно высокую скорость передачи, поскольку эта передача осуществляется побайтно. При этом при большой длинœе кабеля или при не очень интенсивном обмене данными удобнее оказывается последовательный порт.

Последовательный порт (Serial Port) передает в одном направлении одновременно всœего лишь 1 бит данных. Данные могут передаваться через данный порт как от компьютера к внешнему устройству, так и наоборот.

Последовательные порты компьютера обычно соответствуют международному опорному стандарту RS-232C (Reference Standard 232 версии С), в связи с этим к этому порту можно подсоединить любое устройство, ĸᴏᴛᴏᴩᴏᴇ также ориентировано на данный стандарт (к примеру, мышь, модем, последовательный принтер или последовательный порт другого компьютера). Этот интерфейс использует 9 каналов связи: один из них служит для передачи данных от компьютера, другой – для приема данных от периферийного устройства. Остальные 7 каналов используются для управления процессом обмена данными.

Последовательный порт состоит из микросхемы UART (Universal Asynchronous Receiver/Transmitter – универсальный асинхронный приемник/передатчик) и вспомогательных компонентов. Микросхема UART принимает байты данных от шины компьютера (в которой они передаются параллельно), преобразует их в последовательность битов, добавляет служебные биты и затем выполняет передачу данных, а также выполняет обратные действия по приему последовательности битов и перевода кода из последовательного в параллельный.

Современные микросхемы UART оснащены буферной памятью и обеспечивают скорость передачи данных до 115 Кбит/с. Новые высокоскоростные разновидности последовательного порта – улучшенный последовательный порт ESP (Enhanced Serial Port) и Super ESP (Super Enhanced Serial Port) обеспечивают передачу данных до 460 Кбит/с.

Данные при последовательной передаче разделяются служебными битами, такими, как стартовый бит и стоп-бит. Эти биты указывают на начало и конец передачи последовательных бит данных. Данный метод передачи позволяет осуществить синхронизацию между приемной и передающей стороной, а также выровнять скорость обмена данными.

Для идентификации и распознавания ошибок при последовательной передаче в состав посылки дополнительно может включаться бит контроля четности. Значение бита контроля четности определяется двоичной суммой всœех передаваемых битов данных. В режиме, когда бит контроля четности четный (Even Parity), значение бит контроля четности равно 0, в случае если сумма битов четная, и 1 – в противном случае. Биты контроля четности имеют инверсные (обратные) значения (соответственно 1 или 0), в случае если бит контроля четности нечетный (Odd Parity).

Стандартная комплектация компьютера содержит два последовательных порта. Отличие разъема последовательного порта от параллельного состоим в том, что данный разъем имеет 9 контактных штырей, а не гнезд (ʼʼотцовскийʼʼ разъем) (рис. 1.3.11а). Со стороны кабеля подключаемого устройства используется ʼʼматеринскийʼʼ разъем (рис. 1.3.11б). Длина кабеля последовательного порта ограничена 18 м. Основным устройством, подключаемым к последовательному порту, являются старые модели модемов и мышей.

Некоторые компьютеры, особенно ориентированные на коммуникационные приложения, могут иметь последовательные порты, выполненные по другим стандартам (к примеру, RS-449A или RS-613) и имеющие более высокую скорость передачи данных на более дальние расстояния.

Рис. 1.3.11. Последовательный порт: а) 9-контактный разъем компьютера;

б) кабель-переходник последовательный порт-USB

1.3.2.3.13. Порт PS/2

Порт PS/2 (6-контактный) назван так, потому, что он впервые появился в компьютерах производства фирмы IBM серии PS/2. Из 6 контактов используются 4 контакта͵ один из которых предназначен для передачи данных, второй – для сигналов тактовой частоты (в диапазоне 10-16,7 кГц), на третий контакт подается электропитание (+5В), а на четвертый – земля. Передача данных выполняется аналогично тому, как и в последовательном порту, но при передаче данных на устройство добавляется один бит подтверждения. В современных компьютерах имеется два порта PS/2 предназначенные для подключения мыши (зелœеный разъем) и клавиатуры (фиолетовый разъем) (рис. 1.3.12а), однако эти устройства переходят на использование порта USB. Штекеры кабелœей устройств PS/2 (мыши и клавиатуры) приведены на рис. 1.3.12б.

Рис. 1.3.12. Порт PS/2: а) гнезда портов компьютера; б) штекеры кабеля

Последовательный порт - понятие и виды. Классификация и особенности категории "Последовательный порт" 2017, 2018.

Вот мы и добрались до COM порта. Но с ним все не так просто как с LPT, и его полноценное использование потребует значительно больших усилий. Главной загвоздкой является и его главное преимущество - передача данных в последовательном виде. Если в LPT байт данных передается по 8-ми линиям по биту на каждую, и состояние каждой линии можно было легко посмотреть, то в COM порту байт данных передается бит за битом по одной линии (относительно земли, конечно) и посмотреть что там передается с помощью одних светодиодов не удастся. Для этого нужно специальное устройство - преобразователь потока последовательных данных в парраллельный, т.н. USART (Universal Synchronous/Asynchronous Receiver Transmitter). Например, он есть в составе материнской платы компьютера, снабженного COM портом, в любом более мение серьезном микроконтроллере.


Надеюсь, вы еще пали духом в освоении COM порта. Все не так уж и мрачно. Некоторые результаты можно получить и без USART. Сформулируем задачу, которую реализуем на начальном этапе работы с COM портом:


"Хочу что бы к компьютеру через COM порт подключался светодиод. Запускаю программу. Далаю какое-то действие в этой программе, светодиод загорается, делаю другое - светодиод тухнет."


Задача довольно специфичная (с учетом того, что USART не используется) и является чистой "самопальщиной", но вполне реализуема и работоспособна. Давайте приступим к ее реализации.


1. COM порт

Опять берем системный блок вашего ПК и смотрим в тыловую часть. Примечаем там 9-ти штырьковй разъем - это и есть COM порт. Реально их может быть неколько (до 4-х). На моем ПК установлено два COM порта (см. фото).


2. Удлинитель COM порта


3. Аппаратная часть

С аппаратной частью нам тоже придется "повозиться", в том смысле что она будет сложнее чем с первым устройством для LPT порта. Дело в том что протокол RS-232 по которому идет обмен данными в COM порту, имеет несколько отличное соотношение логическое состояние - напряжение. Если обычно это логический 0 0 В, логическая 1 +5 В, то в RS-232 это соотношение следующее: логический 0 +12 В, логическая 1 -12 В.

И например, получив -12 В не сразу понятно что с этим напряжением делать. Обычно проводят преобразование уровней RS-232 в ТТЛ (0, 5 В). Самый простой вариант - стабилитроны. Но я предлагаю сделать этот преобразователь на специальной микросхеме. Называется она MAX232.

Теперь давайте посмотрим, а какие сигналы из COM порта мы можем посмотреть на светодиодах? В действительности, в COM порту есть аж 6 независимых линий, представляющих интерес для разработчика устройств сопряжения. Две из них пока для нас недоступны - линии по передаче последовательных данных. А вот оставшиеся 4 предназначены для управления и индикации процесса передачи данных и мы сможем "передалать" их под свои нужды. Две из них предназначены для управления со стороны внешнего устройства и мы их пока трогать не будем, а вот последние две оставшиеся линии мы сейчас и поиспользуем. Они называются:

  • RTS - Запрос на передачу. Линия взаимодействия, которая показывает, что компьютер готов к приему данных.
  • DTR - Компьютер готов. Линия взаимодействия, которая показывает, что компьютер включен и готов к связи.

Сейчас мы немного передалаем их назначение, и светодиоды, подключенные к ним будут либо тухнуть либо загораться, в зависимости от действий в нашей собственной программе.

Итак, давайте соберем схему, которая позволит нам проводить задуманные действия.

А вот ее практичекая реализация. Я думаю вы меня простите, что я сделал ее в таком стремном макетном варианте, ибо делать плату для такой "высоко продуктивной" схемы не хочется.


4. Программная часть

Тут все попроще. Давайте создадим Windows приложение в Microsoft Visual C++ 6.0 на основе MFC для управления двумя линиями взаимодействия COM порта. Для этого создаем новый проект MFC и указываем ему имя, например, TestCOM . Далее выбираем вариант построения на основе диалога.

Придайте внешний вид окну диалога нашей программы, как на рис. ниже, а именно добавьте четыре кнопки, по две на каждую из линий. Одна из них соответственно необходима для того чтобы "погасить" линию, другая чтобы ее "установить" в еденицу.

Class CTestCOMDlg: public CDialog { // Construction public: CTestCOMDlg(CWnd* pParent = NULL); // standard constructor HANDLE hFile;

Чтобы наша программа могла упрявлять линиями COM порта, его надо сначала открыть. Напишем код, ответственный за открытие порта при загрузке программы.

HFile = CreateFile("COM2", GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0,NULL); if(hFile==INVALID_HANDLE_VALUE) { MessageBox("Не удалось открыть порт!", "Ошибка", MB_ICONERROR); } else { MessageBox("Порт успешно открыт", "Ok", MB_OK); }

С помощью стандарной функции Win API CreateFile() открываем COM-порт COM2 . Далее проверяем успешность открытия с выводом информационного сообщения. Вот тут надо сделать важное замечание: COM2 - это в моем компьютере, а на Вашем компьютере Вы могли подключить его к другому COM порту. Соответственно, его имя нужно изменить на то, кокай порт Вы используете. Посмотреть, какие номера портов присутствуют на Вашем компьютере, можно так: Пуск -> Настройка -> Панель управления -> Система -> Оборудование -> Диспетчер устройств -> Порты (COM и LPT) .

В итоге, функция CTestCOMDlg::OnInitDialog() , расположенная в файле TestCOMDlg.cpp , класса нашего диалога должна принять вид:

BOOL CTestCOMDlg::OnInitDialog() { CDialog::OnInitDialog(); // Add "About..." menu item to system menu. // IDM_ABOUTBOX must be in the system command range. ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); ASSERT(IDM_ABOUTBOX AppendMenu(MF_SEPARATOR); pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); } } // Set the icon for this dialog. The framework does this automatically // when the application"s main window is not a dialog SetIcon(m_hIcon, TRUE); // Set big icon SetIcon(m_hIcon, FALSE); // Set small icon // TODO: Add extra initialization here hFile = CreateFile("COM2", GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0,NULL); if(hFile==INVALID_HANDLE_VALUE) { MessageBox("Не удалось открыть порт!", "Оштбка", MB_ICONERROR); } else { MessageBox("Порт успешно открыт", "Ok", MB_OK); } return TRUE; // return TRUE unless you set the focus to a control }

Теперь добавим обработчики кнопок управления линиями. Я дал им соответствующие имена: функция, которая устанавливает еденицу на линии DTR - OnDTR1(), 0 - OnDTR0(). Для линии RTS соответственно аналогичным образом. Напомню, что обработчик создается при двойном щелчке на кнопке. В итоге, эти четыре функции должны принять вид:

Void CTestCOMDlg::OnDTR1() { // TODO: Add your control notification handler code here EscapeCommFunction(hFile, 6); } void CTestCOMDlg::OnDTR0() { // TODO: Add your control notification handler code here EscapeCommFunction(hFile, 5); } void CTestCOMDlg::OnRTS1() { // TODO: Add your control notification handler code here EscapeCommFunction(hFile, 4); } void CTestCOMDlg::OnRTS0() { // TODO: Add your control notification handler code here EscapeCommFunction(hFile, 3); }

Поясню немного как они работают. Как видно, внитри себя они содержат вызов одной и той же Win API функции EscapeCommFunction() с двумя параметрами. Первый из них - это хэндл (HANDLE) на открытый порт, второй - специальный код действия, соответствующий необходимому состоянию линии.

Все, комилируем, запускаем. Если все хорошо, должны увидеть сообщение об успешном открытии порта. Далее, нажатием соответствующих кнопок мигаем светодиодами, подключенными к COM порту.

© Иванов Дмитрий
Декабрь 2006

Иногда приходится решать задачу связи электронного устройства с компьютером, будь то просто обмен данными или удалённое управление. Эта статья описывает, как это можно реализовать, используя последовательный порт. Главным его преимуществом является то, что стандартный программный интерфейс Windows (API) позволяет производить непосредственное управление выходными линиями, давая прямой контроль над ними, и имеет функцию ожидания некоторого события, связанного с COM-портом. Также стандарт RS-232, по которому выполнены COM-порты, допускает подключение и отключение кабелей во время работы устройств (hot plug).

Описание

COM-порт (последовательный порт) – двунаправленный интерфейс, передающий данные в последовательном виде (бит за битом) по протоколу RS-232. Это довольно-таки распространённый протокол, применяемый для связи одного устройства (например, компьютера) с другими посредством проводов длиной до 30м. Уровни логических сигналов здесь отличаются от стандартных: уровень логической единицы – от +5 до +15В, уровень логического нуля – от -5 до -15В, что требует дополнительных преобразований схемы, но обеспечивает хорошую помехоустойчивость.

Рассмотрим 9-пинововый разъём (DB-9M). Ниже представлена его распиновка:

№ вывода Наименование Характер сигнала Сигнал
1 DCD Входной Data carrier detect
2 RxD Выходной Transmit data
3 TxD Входной Receive data
4 DTR Выходной Data terminal ready
5 GND - Ground
6 DSR Входной Data set ready
7 RTS Выходной Request to send
8 CTS Входной Clear to send
9 RI Входной Ring indicator

Больше всего нас будут интересовать пины 2 (передача данных),3 (приём данных) и 5 (земля). Это минимальный набор для возможности двухстороннего общения приборов.

Подробно останавливаться на описании протокола не буду. Для этого есть ГОСТ’ы и т.п. Поэтому мы пойдём дальше и поговорим о том, как же управлять этим зверем.

Применение

Как уже говорилось, уровни ЛС RS-232 отличаются от стандартных уровней ТТЛ. Следовательно, нам необходимо как-то преобразовывать величины напряжений. Т.е. сделать 5В из +15В и 0В из -15В (и наоборот). Один из способов (и, наверное, самый простой) – использование специальной микросхемы MAX232. Она проста в понимании и одновременно может преобразовывать два логических сигнала.

Ниже приведена схема её включения:


Думаю, трудностей быть не должно. Это один из вариантов использования этой микросхемы: передача данных с микроконтроллера на ЭВМ и наоборот. Передаваемый сигнал поступает на ножки Tx IN с одной стороны и на Rx IN с другой. Входные сигналы снимаются с Tx OUT и Rx OUT соответственно.

Программирование

Для начала поговорим о программировании портов на низком уровне. Так будет более правильно. Я очень много нервов потратил, разбираясь с этим интерфейсом, пока не начал вникать в принцип его работы на более низком уровне, нежели простая передача символов. Если будет понятно это, значит и с языками высокого уровня проблем не будет.

Ниже представлены адреса COM-портов, с которыми нам придётся работать:

Название порта Адрес IRQ
COM 1 3F8h 4
COM 2 2F8h 3
COM 3 3E8h 4
COM 4 2E8h 3

Они могут различаться. Установить значения можно в настройках BIOS’а. Это базовые адреса. От них же и будут зависеть адреса регистров, отвечающие за работу портов:

Адрес DLAB Чтение/Запись Аббревиатура Название регистра
+ 0 =0 Write Transmitter Holding Buffer
=0 Read Receiver Buffer
=1 Read/Write Divisor Latch Low Byte
+ 1 =0 Read/Write IER Interrupt Enable Register
=1 Read/Write Divisor Latch High Byte
+ 2 - Read IIR Interrupt Identification Register
- Write FCR FIFO Control Register
+ 3 - Read/Write LCR Line Control Register
+ 4 - Read/Write MCR Modem Control Register
+ 5 - Read LSR Line Status Register
+ 6 - Read MSR Modem Status Register
+ 7 - Read/Write Scratch Register

Первая колонка – адрес регистра относительно базового. Например, для COM1: адрес регистра LCR будет 3F8h+3=3FB. Вторая колонка – DLAB (Divisor Latch Access Bit) бит, определяющий разное назначение для одного и того же регистра.. Т.е. он позволяет оперировать 12-ю регистрами, используя всего 8 адресов. Например, если DLAB=1, то, обращаясь по адресу 3F8h, мы будем устанавливать значение младшего байта делителя частоты тактового генератора. Если же DLAB=0, то, обращаясь по тому же адресу, в этот регистр будет записан передаваемый или принятый байт.

“Нулевой” регистр

Ему соответствуют регистры приёма/передачи данных и установки коэффициента делителя частоты генератора. Как уже было сказано выше, если DLAB=0, то регистр используется для записи принимаемых/передаваемых данных, если же он равен 1, то устанавливается значение младшего байта делителя частоты тактового генератора. От значения этой частоты зависит скорость передачи данных. Старший байт делителя записывается в следующую ячейку памяти (т.е. для порта COM1 это будет 3F9h). Ниже приведена зависимость скорости передачи данных от коэффициента делителя:

Interrupt Enable Register (IER)

Если DLAB=0, то он используется как регистр управления прерываниями от асинхронного адаптера, если DLAB=1, то в нём задаётся старший байт делителя частоты тактового генератора.

Interrupt Identification Register (IIR)

Прерывание – это событие, при котором останавливается выполнение основной программы и начинается выполнение процедуры прерываний. Этот регистр определяет тип произошедшего прерывания.

Line Control Register (LCR)

Это управляющий регистр.

Бит 7 1 Divisor Latch Access Bit – задание скорости обмена данными
0 Обычнй режим (управление прерываниями, приём/передача данных)
Бит 6 Имитировать обрыв линии (посылает последовательность из нескольких нулей)
Биты 3 – 5 Бит 5 Бит 4 Бит 3 Выбор чётности
X X 0 No Parity
0 0 1 Odd Parity
0 1 1 Even Parity
1 0 1 High Parity (Sticky)
1 1 1 Low Parity (Sticky)
Бит 2 Кол-во стоп-битов
0 1 стоп-бит
1 2 стоп-бита при 6,7 или 8 бит данных или 1.5 стоп-бита при 5 битах данных.
Биты 0 And 1 Бит 1 Бит 0 Число битов данных
0 0 5 бит
0 1 6 бит
1 0 7 бит
1 1 8 бит

Проверка чётности подразумевает под собой передачу ещё одного бита – бита чётности. Его значение устанавливается таким образом, чтобы в пакете битов общее количество единиц (или нулей) было четно или нечетно, в зависимости от установки регистров порта. Этот бит служит для обнаружения ошибок, которые могут возникнуть при передаче данных из-за помех на линии. Приемное устройство заново вычисляет четность данных и сравнивает результат с принятым битом четности. Если четность не совпала, то считается, что данные переданы с ошибкой.

Стоп-бит означает окончание передачи данных.

Modem Control Register (MCR)

Регистр управления модемом.

Бит Значение
0 Линия DTR
1 Линия RTS.
2 Линия OUT1 (запасная)
3 Линия OUT2 (запасная)
4 Запуск диагностики при входе асинхронного адаптера, замкнутом на его выход.
5-7 Равны 0

Line Status Register (LSR)

Регистр, определяющий состояние линии.

Бит Значение
0 Данные получены и готовы для чтения, автоматически сбрасывается при чтении данных.
1 Ошибка переполнения. Был принят новый байт данных, а предыдущий ещё не был считан программой. Предыдущий байт потерен.
2 Ошибка чётности, сбрасывается после чтения состояния линии.
3 Ошибка синхронизации.
4 Обнаружен запрос на прерывание передачи "BREAK" – длинная строка нулей.
5 Регистр хранения передатчика пуст, в него можно записать новый байт для передачи.
6 Регистр сдвига передатчика пуст. Этот регистр получает данные из регистра хранения и преобразует их в последовательный вид для передачи.
7 Тайм-аут (устройство не связано с компьютером).

Modem Status Register (MSR)

Регистр состояния модема.

Ну вот и всё. Оперируя этими регистрами, можно напрямую общаться с COM-портом, управлять передачей и приёмом данных. Если вам не хочется возиться с памятью, можно воспользоваться уже готовыми компонентами для различных сред программирования: C++, VB, Delphi, Pascal и т.д. Они интуитивно понятны, поэтому, думаю, здесь не стоит заострять на них внимание.

THR - промежуточный регистр данных передатчика (только для записи) Данные, записанные в регистр, будут пересланы в выходной сдвигающий регистр (когда он будет свободен), из которого поступят на выход при наличии разрешающего сигнала CTS . Бит 0 передается (и принимается) первым. При длине посылки менее 8 бит старшие биты игнорируются.
RBR - буферный регистр принимаемых данных (только для чтения) Данные, принятые входным сдвигающим регистром помещаются в регистр RBR , откуда они могут быть считаны процессором. Если к моменту окончания приема очередного символа предыдущий не был считан из регистра, фиксируется ошибка переполнения. При длине посылки менее 8 бит старшие биты в регистре имеют нулевое значение.
DLL - регистр младшего байта делителя частоты .
DLM - регистр старшего байта делителя частоты . Делитель определяется по формуле D=115200/V, где V - скорость передачи, бит/с. Входная частота синхронизации 1 8432 МГц делится на заданный коэффициент, после чего получается 16-кратная частота передачи данных.
IЕR - регистр разрешения прерываний . Единичное значение бита разрешает прерывание от соответствующего источника.
Назначение бит регистра IER :
* биты =0 - не используются;
* бит 3 - Mod_IЕ - по изменению состояния модема (любой из линий CTS, DSR, RI, DCD );
* бит 2 - RxL_IЕ - по обрыву/ошибке линии;
* бит 1 - TxD_IE - по завершении передачи;
* бит 0 - RxD_IЕ - по приему символа (в режиме FIFO - прерывание по тайм-ауту).
IIR - регистр идентификации прерываний и признака режима FIFO (только для чтения). Для упрощения программного анализа UART выстраивает внутренние запросы прерывания по четырехуровневой системе приоритетов. Порядок приоритетов (по убыванию): состояние линии, прием символа, освобождение регистра передатчика, состояние модема. При возникновении условий прерывания UART указывает на источник с высшим приоритетом до тех пор, пока он не будет сброшен соответствующей операцией. Только после этого будет выставлен запрос с указанием следующего источника. Ниже описано назначение бит регистра IIR .
* Биты - признак режима FIFO:
11-режим FIFO 16550A;
10 - режим FIFO 16550;
00 - обычный.
* Биты - не используются.
* Бит 3 - прерывание по тайм-ауту приема в режиме FIFO (в буфере есть символы для считывания).
* Биты - причина прерывания с наивысшим приоритетом (в обычном, не FIFO-режиме):
11 - ошибка/обрыв линии, сброс выполняется чтением регистра состояния линии;
10 - принят символ, сброс выполняется чтением данных;
01 - передан символ (регистр THR пуст), сброс выполняется записью данных;
00 - изменение состояния модема; сброс выполняется чтением регистра состояния модема.
* Бит 0 - признак необслуженного запроса прерывания (1 - нет запроса, 0 - есть запрос).
В режиме FIFO причину прерывания идентифицируют биты .
* О11 - ошибка/обрыв линии. Сброс выполняется чтением регистра состояния линии.
* 010 - принят символ. Сброс выполняется чтением регистра данных приемника
* 110 - индикатор тайм-аута (за 4-кратный интервал времени символа не передано и не принято ни одного символа, хотя в буфере имеется, по крайней мере, один). Сброс выполняется чтением регистра данных приемника.
* 001 - регистр THR пуст. Сброс выполняется записью данных.
* 000 - изменение состояния модема (CIS, DSR, RI или DCD ). Сброс выполняется чтением регистра MSR .
FCR - регистр управления FIFO (только для записи). Ниже описано назначение бит регистра FCR :
* Биты - ITL (Interrupt Trigger Level) - уровень заполнения FIFO-буфера, при котором вырабатывается прерывание:
00 - 1 байт (по умолчанию);
01 - 4 байта;
10 - 8 байт;
11 - 14 байт.
* Биты зарезервированы.
* Бит 3 - разрешение операций DMA.
* Бит 2 - RESETTF (Reset Transmitter FIFO) - сброс счетчика FIFO-передатчика (записью единицы; сдвигающий регистр не сбрасывается).
* Бит 1 - RESETRF (Reset Receiver FIFO) - сброс счетчика FIFO-приемника (записью единицы; сдвигающий регистр не сбрасывается).
* Бит 0 - TRFIFOE (Transmit And Receive FIFO Enable) - разрешение (единицей) режима FIFO для передатчика и приемника. При смене режима FIFO-буферы автоматически очищаются.
LCR - регистр управления линией (настройки параметров канала). Ниже описано назначение бит регистра LCR .
* Бит 7 - DLAB (Divisor Latch Access Bit) - управление доступом к делителю частоты.
* Бит 6 - BRCON (Break Control) - формирование обрыва линии (посылка нулей) при BRCON=1.
* Бит 5 - STICPAR (Sticky Parity) - принудительное формирование бита паритета:
0 - контрольный бит генерируется в соответствии с паритетом выводимого символа;
1 - постоянное значение контрольного бита: при EVENPAR =1 - нулевое, при EVENPAR =0 - единичное.
* Бит 4 - EVENPAR (Even Parity Select) - выбор типа контроля: 0 - нечетность, 1 - четность.
* Бит 3 - PAREN (Parity Enable) - разрешение контрольного бита:
1 - контрольный бит (паритет или постоянный) разрешен;
0 - контрольный бит запрещен.
* Бит 2 - STOPB (Stop Bits) - количество стоп-бит:
0 - 1 стоп-бит;
1 - 2 стоп-бита (для 5-битного кода стоп-бит будет иметь длину 1,5 бит).
* Биты - SERIALDB (Serial Data Bits) - количество бит данных:
00 - 5 бит;
01-6 бит;
10 - 7 бит;
11 - 8 бит.
MCR - регистр управления модемом . Ниже описано назначение бит регистра MCR .
* Биты =0 - зарезервированы.
* Бит 4 - LME (Loopback Mode Enable) - разрешение режима диагностики:
0 - нормальный режим;
1 - режим диагностики (см. ниже).
* Бит 3 - IE (Interrupt Enable) - разрешение прерываний с помощью внешнего выхода OUT2 MSR.7 :
0 - прерывания запрещены;
1 - прерывания разрешены.
* Бит 2 - OUT1C (OUT1 Bit Control) - управление выходным сигналом 1 (не используется); в режиме диагностики поступает на вход MSR.6 .
* Бит 1 - RTSC (Request To Send Control) - управление выходом RTS ; в режиме диагностики поступает на вход MSR.4 :
0 - активен (-V);
1 - пассивен (+V).
* Бит 0 - DTRC (Data Terminal Ready Control) - управление выходом DTR ; в режиме диагностики поступает на вход MSR.5 :
0 - активен (-V);
1 - пассивен (+V).
LSR - регистр состояния линии (точнее, состояния приемопередатчика). Ниже описано назначение бит регистра LSR.
* Бит 7 - FIFOE (FIFO Error Status) - ошибка принятых данных в режиме FIFO (буфер содержит хотя бы один символ, принятый с ошибкой формата, паритета или обрывом). В не FIFO-режиме всегда 0.
* Бит 6 - TEMPT (Transmitter Empty Status) - регистр передатчика пуст (нет данных для передачи ни в сдвиговом регистре, ни в буферных регистрах THR или FIFO).
* Бит 5 - THRE (Transmitter Holding Register Empty) - регистр передатчика готов принять байт для передачи. В режиме FIFO указывает на отсутствие символов в FIFO-буфере передачи. Может являться источником прерывания.
* Бит 4 - BD (Break Detected) - индикатор обрыва линии (вход приемника находится в состоянии 0 не менее, чем время посылки символа).
* Бит 3 - FE (Framing Error) - ошибка кадра (неверный стоп-бит).
* Бит 2 - РЕ (Parity Error) - ошибка контрольного бита (паритета или фиксированного).
* Бит 1 - ОЕ (Overrun Error) - переполнение (потеря символа). Если прием очередного символа начинается до того, как предыдущий выгружен из сдвигающего регистра в буферный регистр или в регистр FIFO, прежний символ в сдвигающем регистре теряется.
* Бит 0 - DR (Receiver Data Ready) - принятые данные готовы (в DHR или FIFO-буфере). Сброс - чтением приемника.
Индикаторы ошибок - биты - сбрасываются после чтения регистра LSR . В режиме FIFO признаки ошибок хранятся в FIFO-буфере вместе с каждым символом. В регистре они устанавливаются (и вызывают прерывание) в тот момент, когда символ, принятый с ошибкой, находится на вершине FIFO (первый в очереди на считывание). В случае обрыва линии в FIFO заносится только один «обрывной» символ, и UART ждет восстановления и последующего старт-бита. MSR - регистр состояния модема. Ниже описано назначение бит регистра MSR :
* Бит 7 - DCD (Data Carrier Detect) - состояние линии DCD :
0 - активна (-V);
1 - пассивна (+V).
* Бит 6 - RI (Ring Indicator) - состояние линии RI :
0 - активна (-V);
1 - пассивна (+V).
* Бит 5 - DSR (Data Set Ready) - состояние линии DSR :
0 - активна (-V);
1 - пассивна (+V).
* Бит 4 - CTS (Clear To Send) - состояние линии CTS :
0 - активна (-V);
1 - пассивна (+V).
* Бит 3 - DDCD (Delta Data Carrier Detect) - изменение состояния DCD .
* Бит 2 - TERI (Trailing Edge Of Ring Indicator) - спад огибающей RI (окончание звонка).
* Бит 1 - DDSR (Delta Data Set Ready) - изменение состояния DSR .
* Бит 0 - DCTS (Delta Clear To Send) - изменение состояния CTS .
Признаки изменения (биты ) сбрасываются по чтению регистра.
SRC - рабочий регистр (8 бит), на работу UART не влияет, предназначен для временного хранения данных (в 8250 отсутствует).
В диагностическом режиме (при LМЕ=1 ) внутри UART организуется внутренняя «заглушка»:
* выход передатчика переводится в состояние логической единицы;
* вход приемника отключается; * входы DSR, CTS, RI и DCD отключаются от входных линий и внутренне управляются битами DTRC, RTSC, OUT1C, IE ;
* выходы управления модемом переводятся в пассивное состояние (логический ноль).
Переданные данные в последовательном виде немедленно принимаются, что позволяет проверять внутренний канал данных порта (включая сдвигающие регистры) и отработку прерываний, а также определять скорость работы UART.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...