Что собой представляет LCD телевизор. Мир периферийных устройств пк

Описание устройства карманного компьютера начнем с самого привлекательного и самого дорогого компонента - жидкокристаллического экрана. Именно он в значительной степени определяет стоимость и класс компьютера, именно он требует от пользователя бережного отношения.

Все ЖК экраны компьютеров семейств Pocket PC 2002 и 2003 построены по технологии активной матрицы. В альтернативных аппаратах иногда встречаются и пассивные экраны, например, в Pocket Manager ВЕ300 от Casio.

Принцип действия жидкокристаллической матрицы основан на способности жидких кристаллов принимать в электромагнитном поле упорядоченное положение и снова располагаться хаотично при его отсутствии. Если сильно увеличить одну ячейку жидкокристаллической матрицы, то можно увидеть, что она представляет собой герметичную капсулу, в которой заключено небольшое количество жидких кристаллов. Основанием капсулы служит стекло с прозрачным тонкопленочным электрическим проводником. Когда на проводник ячейки подается электрический потенциал определенной полярности, кристаллы принимают упорядоченное положение, когда потенциал не подается - возвращаются в хаотичное исходное состояние. Таким образом устроена ячейка пассивной матрицы.

Устройство активной матрицы сложнее. Поскольку при исчезновении потенциала жидкие кристаллы стремятся вернуться в исходное положение, у пассивной матрицы возникает эффект инерционности изображения. Чтобы удержать кристаллы в определенном положении, потенциал должен подаваться постоянно. Для этого в активной матрице к каждой ячейке подводится не просто проводник, а вывод тонкопленочного транзистора (отсюда и название TFT - Thin Film Transistor - тонкопленочный транзистор), который сохраняет заряд до того момента, пока на него не будет подан электрический сигнал обратной полярности. Применение транзисторов вместо простых проводников многократно усложняет устройство и в конечном итоге производство жидкокристаллических матриц. Ведь в прямоугольной матрице размером 57,6 х 76,82 мм расположено 76 800 ячеек размером 0,24 мм, каждая из которых представляет собой комплекс из трех более мелких ячеек - триад - из которых затем синтезируется цветное изображение.

Каждая ячейка, состоящая из трех элементов триады, представляет собой пиксел и имеет прямоугольную форму. Сами ячейки образованы продольными перегородками на стекле подложки экрана и поперечными пластиковыми вставками. Ячейки этой решетки заполняются жидкими кристаллами и накрываются покровным, внешним

Но это еще не все. Кроме токопроводящего пленочного слоя, расположенного на покровном стекле, в толще жидкокристаллической матрицы есть еще несколько слоев. Во-первых, это внутренний поляризационный фильтр, расположенный между лампой подсветки экрана и стеклом подложки матрицы. Затем идет матрица микроскопических светофильтров, в которой каждому элементу триады образующей пиксель, соответствует один из базовых цветов - красный, зеленый или синий (red, green, blue, RGB). На внешней поверхности покровного стекла экрана устанавливается второй поляризационный фильтр. Наконец, сверху матрицы располагается специальный прозрачный экран сенсорной чувствительности.

Как работает эта сложная система? Контроллер дисплея, согласно командам операционной системы строит изображение и подает его в виде электрических сигналов на выводы транзисторов ячеек матрицы. Жидкокристаллическая матрица является устройством вывода информации с непосредственной адресацией. То есть напряжение к каждой ячейке матрицы (к каждому пикселу) подается индивидуально, а не построчным сканированием луча, как это происходит в электронно-лучевых трубках мониторов настольных компьютеров. Благодаря этому изображение, получаемое при помощи жидкокристаллической матрицы, отличается высокой стабильностью и полным отсутствием геометрических искажений.

Сами по себе жидкие кристаллы какого-либо изображения построить не способны, поскольку света не излучают. Их роль в матрице - перекрыть либо пропустить световой поток от лампы подсветки. При этом яркость изображения зависит от яркости лампы подсветки, а контрастность - от точного совпадения направления луча света и вектора ориентации жидких кристаллов.

Повысить контраст изображения до приемлемого уровня, призвана пара фильтров-поляризаторов - внутреннего и внешнего. Свет лампы подсветки, проходя через внутренний поляризационный фильтр, ориентируется таким образом, что направление вектора поляризации совпадает с вектором ориентации кристаллов, которые под воздействием управляющего сигнала контроллера располагаются параллельно поляризованным лучам света. Свет в этом случае проходит беспрепятственно, пиксел выглядит ярко светящимся. Если кристаллы в ячейке матрицы располагаются под углом к лучам света и частично перекрывают его, пиксел выглядит затемненным (таким образом строится полутоновое изображение). Кристаллы, расположенные перпендикулярно, полностью перекрывают лучи света, испускаемые лампой подсветки, - пиксел выглядит темным.

В качестве подсветки в экранах карманных компьютеров используются либо трубчатые люминесцентные лампы белого свечения (в карманных компьютерах с монохромным экраном - белого, янтарного или зеленого свечения), либо люминесцентные полимерные панели, излучающие свет всей поверхностью. Если в качестве источника света используются лампы, то за внутренним стеклом жидкокристаллической матрицы установлена относительно толстая стеклянная призма. Лампы светят в ее торцы, а призма рассеивает свет, обеспечивая тем самым равномерность подсветки экрана. Поскольку площадь экрана КПК невелика, а проблема энергосбережения стоит достаточно остро, зачастую подсветка осуществляется одной лампой.

Так были устроены экраны карманных компьютеров до появления семейства Pocket PC. Именно в это время среди пользователей и компьютерных аналитиков разгоралась жаркая дискуссия - нужен ли вообще карманному компьютеру цвет? Дело в том, что в то время даже самая качественная жидкокристаллическая матрица давала изображение по яркости и контрасту уступавшее изображению, получаемому при помощи электроннолучевой трубки. Теперь вспомните, что происходит, когда в комнату, где работает телевизор, проникает яркий солнечный свет - изображение на экране телевизора практически исчезает. При этом контраст изображения электроннолучевой трубки вчетверо выше, чем контраст изображения жидкокристаллической матрицы рядового КПК.

Казалось бы, в условиях дневного освещения, не говоря уже о ярком солнечном свете, у цветной жидкокристаллической матрицы нет ни одного шанса - на экране карманного компьютера ничего не видно, включай подсветку или не включай (она на компьютерах с активными матрицами, кстати, и не выключалась). Но монохромные экраны со своей задачей справлялись, поскольку основной их режим - работа в отраженном свете. То есть внешний свет попадает на экран, проходит сквозь прозрачные слои матрицы, отражается от внутренней поверхности и поверхности кристаллов и возвращается, участвуя в построении экранного изображения.

По такому же принципу построены экраны всех карманных компьютеров Pocket PC 2002. Отражающие (или рефлективные) экраны имеют такое же устройство, как и обычная активная жидкокристаллическая матрица, но за одним исключением. На внутреннюю поверхность стеклянной призмы, которая рассеивает свет от лампы подсветки, нанесена отражающая амальгама, увеличивающая отражающую способность призмы. В результате яркий внешний свет проникает сквозь прозрачные слои экрана, отражается от поверхности призмы и возвращается, осуществляя подсветку.

Комбинация рефлективного экрана и лампы подсветки позволяет подобрать наиболее эффективный режим вывода изображения, при котором пользователю даже прямые солнечные лучи перестают быть помехой. А с практической точки зрения, отражающие экраны выглядят мягче и спокойнее, чем активные матрицы. Возможно на них не такие яркие и насыщенные цвета, зато работать с таким экраном комфортнее и безопаснее. Проблема не только в каких-то вредных излучениях, но и в резком перепаде яркостей. На ярком солнечном свете даже чтение обычного текста с обычной бумаги превращается в пытку. И яркая, красочная картинка на экране маленького компьютера в условиях умеренной освещенности в этом смысле ничуть не лучше. Поэтому мы можем смело записать в плюсы компьютеров Pocket PC еще и заботу о нашем зрении.

В современных КПК рефлективная подсветка используется только для удешевления моделей, а если производитель хочет предоставить экран максимального качества, то используется трансфлективная матрица. Практически сохраняя все особенности отражающей конструкции, источник света перемещается за стекло - освещение становится более равномерным и контрастным, а цвета более живыми.

Экран iPhone, устроен по другому и его конструкция - тема отдельной статьи. Здесь же мы отметим лишь одну особенность экрана устройства от Apple. Согласно многочисленным отзывам пользователей iPhone, иногда им не хватает возможности использовать стилус для ввода или управления. Несмотря на то, что сама ОС и приложения для iPhone , ориентированы исключительно на управление пальцами, на рынке существуют специальные стилусы для работы с устройствами, имеющими экраны емкостного типа. Так что, если вы привыкли пользоваться стилусом, то и управлять iPhone, можно и при помощи пера.

Компания Tianma Microelectronics на сегодняшний день является одним из самых крупных производителей жидкокристаллических дисплеев.

Дисплеи Tianma нашли применение в самых разнообразных областях: мобильная телефония, MP3/MP4-плееры, телекоммуникационные и навигационные системы, автомобильные системы, цифровая фотография и др. Продукцию компании используют в своих изделиях такие бренды как: AT&T, Alcatel, BBK, Bosсh, Casio, Citroen, Denon, Funai, General Electric, Grundig, LG, Magellan, Motorola, NEC, Pioneer, Polaroid, Ricoh, Samsung, Siemens и Thomson.

Tianma Microelectronics была основана в Китае в 1983 году. Сейчас она имеет в своем составе несколько научно-исследовательских центров и фабрик. Работают представительства в Германии (Карлсруэ), США (Калифорния), Корее (Кенгидо) и Тайване (Таоюан).

В 1984 году компания освоила массовое производство незамысловатых (по нынешним меркам) TN LCD-дисплеев. В июле 2011 года управляющая компания AVIC International Group приобрела подразделение NEC LCD Technologies, специализирующееся на дисплеях. Сегодня, кроме TN, Tianma может предложить STN, CSTN и TFT-дисплеи.

TFT-дисплеи

Принцип работы LCD TFT

LCD TFT (Liquid crystal display Thin film transistor ) — наиболее распространенный вид жидкокристаллических дисплеев (рис. 1). Своим названием они обязаны тонкопленочному транзистору (TFT), являющемуся разновидностью полевого, в котором металлические контакты и полупроводниковый канал изготавливаются в виде тонких пленок. TFT используется для управления жидкими кристаллами, т.е. для формирования цвета пикселей.


Рис. 1.

В первых TFT-дисплеях, появившихся в 1972 году, использовался селенид кадмия, обладающий высокой подвижностью электронов и поддерживающий высокую плотность тока, но со временем был осуществлен переход на аморфный кремний (a-Si). Кроме аморфного кремния на данный момент разработано много других технологий, но лидером по объему производства пока остается a-Si. Именно по этой технологии изготавливает свои TFT-дисплеи компания Tianma.

Дисплей состоит из ЖК-матрицы, источников света для подсветки, контактного жгута и корпуса. Каждый пиксель ЖК-матрицы представляет собой слой молекул между двумя прозрачными электродами и два поляризационных фильтра. А пиксели в свою очередь составлены из субпикселей (рис. 2), формирующих различные цвета. Поверхность электродов специально обработана для изначальной ориентации молекул жидких кристаллов в одном направлении.


Рис. 2.

Такая структура поворачивает плоскость поляризации световой волны, и, доходя до второго фильтра, свет проходит его без потерь.

Если к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что приводит к разрушению винтовой упорядоченности. С ростом напряженности электрического поля спираль постепенно раскручивается, и через второй фильтр проходит все меньше и меньше света.

При определенной величине поля почти все молекулы становятся параллельны, и плоскость поляризации света практически не вращается. Это приводит к непрозрачности структуры. Таким образом, меняя напряжение, подаваемое на электроды, можно управлять степенью прозрачности и, соответственно, интенсивностью свечения субпикселей.

Основные параметры LCD TFT

Для описания TFT-дисплеев используется много параметров. Рассмотрим наиболее важные из них:

  • Диагональ экрана (Diagonal)- расстояние между противоположными углами матрицы. Диагональ экрана обычно измеряется и записывается в дюймах.
  • Разрешение (Resolution)- горизонтальный и вертикальный размеры экрана, измеренные в пикселях. Разрешение TFT-дисплея имеет одно фиксированное значение, все остальные достигаются интерполяцией. Чем больше пикселей на экране, тем качественнее изображение можно получить, и тем дисплей дороже.
  • Яркость (Brightness)- количество света, излучаемое дисплеем. Яркость обычно измеряется в канделах на квадратный метр (кд/м 2). Зависит от мощности лампы, подсветки и ее характеристик. Яркость желательно выбирать с запасом, чтобы картинка хорошо воспринималась при любом уровне внешней освещенности. С увеличением диагонали экрана повышается, как правило, и показатель яркости. Если для двухдюймовых панелей яркость может быть около 200 кд/м 2 , то для 10-дюймовых яркость уже порядка 300…400кд/м 2 .
  • Контрастность (Contrast)- отношение яркостей самой светлой и самой темной точек при заданной яркости подсветки. Чем меньше засвечен черный цвет, и чем выше яркость белого, тем выше контрастность. Чем больше это соотношение, тем лучше будет цветопередача изображения. Контрастность обычно записывается в виде 1000:1.
  • Время отклика (Response time)- минимальное время, за которое ячейка жидкокристаллической панели изменяет свою яркость. Чем оно меньше, тем лучше. Измеряется этот показатель в миллисекундах. Его оптимальное значение- менее 20мс. Малое время отклика очень важно при просмотре динамично меняющегося изображения на больших экранах. При его хорошем значении за изображением не должно быть никаких шлейфов.
  • Угол обзора (Viewing angle)- угол, при котором падение контраста изображения в центре панели достигает заданного (обычно 10). Появление этого параметра обусловлено тем, что дисплеи имеют ограниченный угол обзора, и контрастность изображения весьма сильно зависит от угла падения взгляда на LCD-панель. При определенных углах контраст резко падает, и чтение информации с экрана становится почти невозможным. Угол обзора обычно записывается в виде 170°/160°. Первая цифра относится к вертикали, а вторая- к горизонтали.

Интерфейсы LCD TFT

Для соединения ЖК-панели с управляющим микропроцессором Tianma предлагает на выбор несколько интерфейсов: параллельный цифровой интерфейс (CPU 8/16 bit), последовательный периферийный интерфейс (SPI), RGB-интерфейс и интерфейс низковольтной дифференциальной передачи сигналов (LVDS).

Остановимся подробнее на каждом из них:

  • CPU 8/16 bit- один из самых старых и распространенных интерфейсов. Применяется повсеместно в цифровой электронике. Состоит из шины адреса/данных (8 или 16 бит) и соответствующих управляющих сигналов. Использование этого интерфейса при подключении LCD-панелей постепенно отмирает. Его преимущественно используют на небольших ЖК-экранах.
  • SPI- еще один старый и очень распространенный интерфейс. Является простым и недорогим вариантом сопряжения микроконтроллера и дисплея. Имеется на борту практически любого микроконтроллера, и, как правило, кроме дисплея через SPI подключается еще много внешней периферии. Основным преимуществом является использование всего четырех линий: двух линий данных, тактирующего сигнала и сигнала выбора микросхемы. Используется также преимущественно на небольших экранах.
  • RGB- классический вариант подключения ЖК-панели. Своим названием обязан трем основным цветам, формирующим цвет пикселя: RED (красный), GREEN (зеленый) и BLUE (синий).

С точки зрения количества связей интерфейс является довольно громоздким. Больше всего цифровых линий уходит на передачу трех цветов: 6/8 линий (разрядов) на цвет — суммарно 18 или 24. Плюс к этому — сигналы тактовой частоты, строчной и кадровой синхронизации.

Интерфейс имеет много недостатков: большое количество связей, сложность синхронизации при передаче данных на высоких частотах (т.е. при работе с высоким разрешением) и низкая помехозащищенность.

  • LVDS- самый распространенный на текущий момент интерфейс, обеспечивающий высокую пропускную способность. Был разработан компанией National Semiconductor в 1994 году.

LVDS реализует дифференциальную передачу данных, что обеспечивает высокую помехозащищенность интерфейса и позволяет добиться высокой пропускной способности. LVDS подразумевает наличие в схеме трансмиттеров и ресиверов. Трансмиттер подключается к управляющему микроконтроллеру. Ресивер располагается на LCD-панели.

Передачу данных обеспечивают пять дифференциальных пар: четыре пары используются для передачи данных и одна — для передачи тактовых сигналов.

LVDS используется для передачи как 18-разрядного цветового кода (три цвета по 6 бит), так и для 24-разрядного цвета (три цвета по 8 бит). Передача одного цвета происходит сразу по нескольким дифференциальным парам. Сигналы строчной и кадровой синхронизации также поступают на LCD-панель через дифференциальные каналы.

Для увеличения пропускной способности этого интерфейса National Semiconductor расширила интерфейс LVDS и удвоила количество дифференциальных пар, используемых для передачи данных. Это усовершенствование получило название LDI — LVDS Display Interface. В документации Tianma такой вариант интерфейса обозначается как «LVDS 2 port».

Как было сказано выше, LDI получил восемь дифференциальных пар, предназначенных для передачи данных, и две дифференциальные пары тактовых сигналов, т.е. LDI, по сути дела, представляет собой два независимых полнофункциональных канала LVDS, передача данных в каждом из которых осуществляется собственным тактовым сигналом.

Соответственно, наличие двух каналов позволило вдвое увеличить пропускную способность интерфейса. Теперь за один пиксельный такт можно передать информацию о двух пикселях. При такой организации один канал предназначен для передачи четных точек экрана (Even), а второй — для нечетных (Odd).

Сенсорный экран LCD TFT

Часто TFT-дисплеи комплектуются сенсорными экранами, получившими сейчас небывалое распространение в мобильных телефонах, игровых консолях, платежных терминалах и прочих устройствах. Наиболее востребованы два типа сенсорных экранов: резистивные и емкостные.

Резистивные сенсорные экраны обладают рядом достоинств, которые позволили им занять очень большую долю на рынке. Самое главное их преимущество — низкая цена. Кроме этого резистивные экраны обладают стойкостью к загрязнению: т.е. загрязнение не нарушает работу сенсорного экрана. Экраны реагируют на прикосновение практически любым твердым гладким предметом.

Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны, на которые нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер регистрирует изменение сопротивления и преобразует его в координаты прикосновения.

Емкостные сенсорные экраны обладают лучшим светопропусканием и большей долговечностью по сравнению с резистивными, но восприимчивы к воздействию влаги и токопроводящих загрязнений. Экраны реагируют на прикосновение только токопроводящего предмета (пальца или специального стилуса). То есть, если вы захотите воспользоваться обычным стилусом или любым другим твердым предметом, экран на ваше касание никак не отреагирует. По точности определения координат емкостные экраны ни в чем не уступают резистивным.

Принцип работы экрана этого типа основан на способности человеческого тела проводить электрический ток. В основе емкостного экрана лежит стеклянная подложка, на поверхность которой нанесен резистивный материал, прикрытый токопроводящей пленкой. В момент касания пальцем экрана возникает электрический ток, а специальный контроллер вычисляет координаты касания.

LCD TFT компании Tianma

Ассортимент TFT-дисплеев, выпускаемых компанией Tianma, достаточно обширен. Формат данной статьи не позволяет рассказать о всех моделях, поэтому в таблице 1 представлен краткий обзор дисплеев, сгруппированных по диагонали и разрешению. Для детального ознакомления со всей линейкой лучше обратится к сайту производителя по адресу: http://tianma-europe.com/products/tftcolormodules/index.html .

Таблица 1. TFT-дисплеи компании Tianma

Диагональ, дюйм Разрешение Яркость, кд/м 2 Интерфейс
1,44 128×128 180 CPU 8 bit, SPI
1,45 128×128 140 CPU 8 bit
1,77 128×160 250 CPU 8 bit
2,0 176×220 220 CPU 8/16 bit
2,0 240×320 170…200 CPU 8/16 bit, SPI
2,2 240×320 90…220 CPU 8/16 bit, RGB18 bit, SPI
2,3 320×240 250 CPU 8/16 bit
2,4 240×320 180…310 CPU 8/16 bit
2,7 320×240 300 8-bit RGB/ CCIR656/601
2,8 240×320 210…260 CPU 8/16 bit
2,8 240×400 220 CPU 16 bit
3,2 240×400 250…350 RGB 18 bit, CPU 8/16/18 bit
3,5 240×320 80…100 RGB 6bit, SPI
3,5 320×240 300…350 RGB 24bit
3,5 272×480 300 CPU 8/9/16/18 bit
3,5 320×480 300 CPU / RGB
4,3 480×272 280…400 RGB 24bit
4,7 480×272 280…320 RGB 24bit
5,0 640×480 350 RGB 18 bit, SPI
5,0 800×480 250…300 RGB 24 bit
5,6 320×234 200…330 analog RGB
5,7 320×240 320…450 RGB 18 bit
5,7 640×480 400 RGB 18 bit
6,0 800×480 280…400 RGB 24 bit
6,2 800×480 400 RGB 24 bit
6,95 800×480 280…400 RGB 18 bit
6,95 1280×800 400 LVDS
7,0 800×480 280…500 RGB 24/18 bit
7,0 800×600 200 RGB 18 bit
7,0 1024×600 250 LVDS
8,0 800×600 250 RGB 24 bit
9,0 800×480 250 RGB 24 bit
9,7 1024×768 220…350 RGB 24 bit , LVDS
10,4 800×600 230…400 LVDS, RGB 18 bit
12,1 800×600 400…450 LVDS
15,0 1024×768 250…400 LVDS
19,0 1440×900 250 LVDS

Часть производимых компанией Tianma TFT-дисплеев комплектуется сенсорными экранами. Компания использует резистивные и емкостные экраны. Подавляющее большинство — резистивные.

Большинство TFT-дисплеев работает в расширенном температурном диапазоне -20…70°С.

TN- и STN-дисплеи

Первой технологией изготовления LCD-дисплеев была технология Twisted Nematic (TN). Она была разработана в 1973 году. Название обязано своим происхождением поведению жидких кристаллов, которые при размещении между выравнивающими панелями с бороздками выстраивалась в спираль.

TN-дисплеи имеют несколько существенных недостатков: низкая контрастность, большое время реакции, маленькие углы обзора и почти невозможное формирование оттенков. Но они обладают самой низкой стоимостью и поэтому находят самое широкое применение в недорогих изделиях с невысокими требованиями к качеству изображения.

Типичные представители этой технологии представлены на рисунках 3 и 4.

Рис. 3.

Рис. 4.

Развитием технологии TN LCD-дисплеев стала Super Twisted Nematic (STN). STN позволила увеличить угол кручения ориентации кристаллов внутри LCD-дисплея до 270 градусов. Это позволило увеличить контрастность изображения и размеры панелей.

На основе технологии TN, STN и их производных компания Tianma производит большое количество символьных и графических LCD-индикаторов.

Символьные индикаторы (рисунок 5) сделаны на технологии STN под управлением контроллера ST7066U. Подключение к внешнему управляющему микропроцессору происходит через 8-битный параллельный цифровой интерфейс. Возможные варианты количества символов: 8х1 (8 символов в строке, 1 строка), 8х2 (8 символов в строке, 2 строки), 16х1, 16х2, 20х2, 20х4 и 40х2. Подсветка выполнена из нескольких последовательно расположенных SMD-светодиодов. Стандартный цвет подсветки — желто-зеленый. Индикаторы рассчитаны на работу при температуре -20…70°С.


Рис. 5.

Монохромные графические индикаторы сделаны на основе STN или FSTN-технологии. Управляющих контроллеров здесь предложено достаточно много: ST7579, SBN1661, ST7565R, SDN8080 и другие. Подключение к внешнему управляющему микропроцессору происходит через последовательный либо параллельный 4/8-битный цифровой интерфейс. Доступны индикаторы со следующими разрешениями: 96х16, 96х32, 122х32, 128х64, 240х64, 240х128 и 320х240.

Подсветка выполнена из светодиодов. Индикаторы рассчитаны на работу при температуре -20…70°С.

Цветные графические индикаторы (рис. 6) сделаны на основе Color Super Twisted Nematic (СSTN) технологии. Технология довольно старая, но, тем не менее, все еще занимает небольшую долю ранка цветных дисплеев.

Рис. 6.

Управляющих контроллеров предложено несколько: ST7637, UC1697v, ST7669V и ST7628. Подключение к внешнему управляющему микропроцессору происходит через параллельный 8/16-битный цифровой интерфейс. Доступны следующие разрешения дисплеев: 96х64,128х128 и 128х160, 240х128.

Индикаторы рассчитаны на работу при температуре -20…70°С.

Заключение

В настоящий момент Tianma осваивает технологию активной матрицы на органических светодиодах (Active Matrix Organic Light-Emitting Diode, AMOLED). К концу этого года в Шанхае планируется выпуск первых OLED-дисплеев.

Технология подразумевает использование органических светодиодов в качестве светоизлучающих элементов и активной матрицы из TFT-транзисторов для управления светодиодами. Дисплеи AMOLED отличаются от TFT улучшенной цветопередачей, повышенной яркостью и более высокой контрастностью картинки. Еще один несомненный плюс этих экранов — пониженное энергопотребление, что позволяет более экономно расходовать заряд аккумулятора.

Выведя на рынок свои OLED-дисплеи, компания Tianma, несомненно, еще больше укрепит свое положение лидера на рынке жидкокристаллических дисплеев.

Получение технической информации, заказ образцов, поставка — e-mail:

Новые дисплеи компании Tianma

Компания Tianma выпустила новые дисплеи с возможностью подключения через параллельный или последовательный интерфейсы.

TM050QDH01

Данный дисплей разработан в первую очередь для видеонаблюдения и переносных портативных устройств. На борту этого 5" TFT-дисплея стоят два контроллера NT39403 + NT39207, он имеет VGA-разрешение 640 x 480, а также высокую контрастность и яркость.

TM022HDHT1 — интерфейсы SPI + RGB 18 бит

Компактный дисплей диагональю 2,2" с книжной ориентацией, разрешением 240 x 320, с универсальным контроллером ILI9340 ориентирован на переносные устройства. Имеет полуотражающий поляризатор, который позволяет использовать данный дисплей без подсветки.

TM020HBH03 — интерфейсы CPU 8/16 бит, 4-wire SPI

TFT-дисплей 2,0" с сенсорным экраном и достаточно широким для такой диагонали разрешением — 240 x 320.

TM035HBHT1 — интерфейсы RGB 6 бит + SPI

TM035HDHT1 — интерфейсы RGB 6 бит + SPI

Два дисплея с полуотражающим поляризатором и двумя интерфейсами. Отличие этих моделей друг от друга заключается в наличии сенсорной панели у TM035HBHT1.

Основные преимущества:

  • два интерфейса позволяют использовать эти TFT-дисплеи в различных применениях, особенно там, где не хватает выводов для стандартного RGB-интерфейса.
  • Низкое энергопотребление, как у TM050QDH01 (100мА при напряжении 9,75В), так и у TM022HDHT1 (20мА при напряжении 12,8В).
  • Компактный корпус позволяет встроить эти дисплеи практически в любой форм-фактор.
  • Некоторые дисплеи можно использовать без подсветки, что также сказывается на энергопотреблении.
О компании Tianma Microelectronics

Технология LCD TFT матриц предусматривает использование в производстве жидкокристаллических дисплеев специальных тонкопленочных транзисторов. Само название TFT – это сокращение от Thin-film transistor, что в переводе и означает – тонкопленочный транзистор. Такой вид матриц применяет в самых разнообразных устройствах, от калькуляторов, до дисплеев смартфонов.

Наверное, каждый слышал понятия TFT и LCD, но мало кто задумывался, что это такое, из-за чего у непросвещенных людей возникает вопрос, чем отличается TFT от LCD? Ответ на этот вопрос заключается в том, что это две разные вещи, которые не стоит сравнивать. Чтобы понять, в чем разница между этими технологиями, стоит разобрать, что такое LCD, и что такое TFT.

1. Что такое LCD

LCD – это технология изготовления экранов телевизоров, мониторов и других устройств, основанная на использовании специальных молекул, которые называются – жидкие кристаллы. Эти молекулы имеют уникальные свойства, они постоянно находятся в жидком состоянии и способны менять свое положение при воздействии на них электромагнитного поля. Кроме этого, эти молекулы имеют оптические свойства, схожие со свойствами кристаллов, из-за чего эти молекулы и получили свое название.

В свою очередь экраны LCD могут иметь разные типы матриц, которые в зависимости от технологии изготовления имеют различные свойства и показатели.

2. Что такое TFT

Как уже говорилось, TFT – это технология изготовления LCD дисплеев, которая подразумевает использование тонкопленочных транзисторов. Таким образом, можно сказать, что TFT – это подвид LCD мониторов. Стоит отметить, что все современные LCD телевизоры, мониторы и экраны телефонов относятся к виду TFT. Поэтому вопрос, что лучше TFT или LCD не совсем правильный. Ведь отличие FTF от LCD заключается в том, что LCD – это технология изготовления жидкокристаллических экранов, а TFT – это подвид ЖК дисплеев, к которому относятся все типы активных матриц.

Среди пользователей TFT матрицы имеют название – активные. Такие матрицы обладают существенно более высоким быстродействием, в отличие от пассивных ЖК-матриц. Помимо этого, тип экрана LCD TFT отличается повышенным уровнем четкости, контрастности изображения и большими углами обзоров. Еще один важный момент заключается в том, что мерцание в активных матрицах отсутствует, что означает, что за такими мониторами приятнее работать, глаза при этом меньше устают.

Каждый пиксель матрицы TFT оснащен тремя отдельными управляющими транзисторами, благодаря чему достигается значительно более высокая частота обновления экрана, в сравнении с пассивными матрицами. Таким образом, в состав каждого пикселя входит три цветные ячейки, которые управляются соответствующим транзистором. Например, если разрешение экрана составляет 1920х1080 пикселей, то количество транзисторов в таком мониторе будет равно 5760х3240. Применение такого количества транзисторов стало возможным благодаря сверхтонкой и прозрачной структуре – 0,1- 0,01 микрон.

3. Виды матриц TFT экранов

На сегодняшний день, благодаря целому ряду преимуществ, TFT дисплеи используются в самых разнообразных устройствах.

Все известные ЖК телевизоры, которые имеются на российском рынке, оснащены TFT дисплеями. Они могут различаться своими параметрами в зависимости от используемой матрицы.

На данный момент наиболее распространенными матрицами TFT дисплеев являются:

Каждый из представленных видов матриц обладает своими преимуществами и недостатками.

3.1. Тип ЖК матрицы TFT TN

TN – это самый распространенный тип экрана LCD TFT. Такую популярность данный тип матрицы получил благодаря уникальным особенностям. При своей низкой стоимости, они имеют достаточно высокие показатели, причем в некоторых моментах, такие экраны TN даже имеют преимущества перед другими типами матриц.

Главная особенность – это быстрый отклик. Это параметр, который обозначает время, за которое пиксель способен отреагировать на изменение электрического поля. То есть, время, которое необходимо для полного изменение цвета (от белого к черному). Это очень важный показатель для любого телевизора и монитора, в особенности для любителей игр и фильмов, насыщенных всевозможными спецэффектами.

Недостатком данной технологии является ограниченные углы обзоров. Однако современные технологии позволили исправить этот недостаток. Сейчас матрицы TN+Film имеют большие углы обзоров, благодаря чему такие экраны способны конкурировать с новыми IPS матрицами.

3.2. IPS матрицы

Данный вид матриц имеет наибольшие перспективы. Особенность данной технологии состоит в том, что такие матрицы имеют самые большие углы обзоров, а также наиболее естественную и насыщенную цветопередачу. Однако недостатком этой технологии до сегодняшнего дня был длительный отклик. Но благодаря современным технологиям этот параметр удалось сократить до приемлемых показаний. Более того, нынешние мониторы c IPS матрицами имеют время отклика 5 мс, что не уступает даже TN+Film матрицам.

По мнению большинства изготовителей мониторов и телевизоров, будущее лежит именно за IPS матрицами, благодаря чему они постепенно вытесняют TN+Film.

Кроме этого, производители мобильных телефонов, смартфонов, планшетных ПК и ноутбуков все чаще выбирают TFT LCD модули с матрицами IPS, обращая внимание на отличную цветопередачу, хорошие углы обзора, а также экономичное потребление энергии, что крайне важно для мобильных устройств.

3.3. MVA/PVA

Данный тип матриц – это некий компромисс между TN и IPS матрицами. Ее особенность заключается в том, что в спокойном состоянии молекулы жидких кристаллов располагаются перпендикулярно плоскости экрана. Благодаря этому производители смогли достичь максимально глубокого и чистого черного цвета. Кроме этого данная технология позволяет достичь больших углов обзора, в сравнении с TN матрицами. Достигается это с помощью специальных выступов на обкладках. Эти выступы определяют направление молекул жидких кристаллов. При этом стоит отметить, что такие матрицы имеют меньшее время отклика, нежели IPS-дисплеи, и большее, в сравнении с TN матрицами.

Как ни странно, но данная технология не нашла широкого применения в массовом производстве мониторов и телевизоров.

4. Что лучше Super LCD или TFT

Для начала стоит разобрать, что такое Super LCD.

Super LCD – это технология производства экранов, которая широко распространена среди производителей современных смартфонов и планшетных ПК. По сути, Super LCD – это те же IPS матрицы, которые получили новое маркетинговое название и некоторые улучшения.

Главное отличие таких матриц заключается в том, что они не имеют воздушного зазора между наружным стеклом и картинкой (изображением). Благодаря этому удалось достичь уменьшения бликов. Кроме этого визуально изображение на таких дисплеях кажется ближе к зрителю. Если говорить о сенсорных дисплеях на смартфонах и планшетных ПК, то экраны Super LCD более чувствительны к прикосновениям и быстрее реагируют на движения.

5. TFT / LCD монитор: Видео

Еще одно преимущество данного типа матриц заключается в пониженном потреблении энергии, что опять же крайне важно в случае автономного устройства, такого как ноутбук, смартфон и планшет. Такая экономичность достигается благодаря тому, что в спокойном состоянии жидкие кристаллы расположены так, чтобы пропускать свет, что снижает потребление энергии при отображении светлых картинок. При этом стоит отметить, что подавляющее большинство фоновых картинок на всех интернет сайтах, заставках в приложениях и так далее, являются как раз таки светлыми.

Главной областью применения SL CD дисплеев является именно мобильная техника, благодаря низкому потреблению энергии, высокому качеству изображения, даже при прямых солнечных лучах, а также более низкой стоимости, в отличии, к примеру, от AMOLED экранов.

В свою очередь LCD TFT дисплеи включают в себя тип матрицы SLCD. Таким образом, Super LCD – это тип активной матрицы TFT дисплея. В самом начале данной публикации мы уже говорили о том, что TFT и LCD разницы не имеют, это в принципе одно и то же.

6. Выбор дисплея

Как уже говорилось выше, каждый из типов матриц обладает своими преимуществами и недостатками. Все они также уже оговаривались. В первую очередь при выборе дисплея, стоит учитывать ваши требования. Стоит задать себе вопрос, - Что именно нужно от дисплея, как он будет использоваться и в каких условиях?

Отталкиваясь от требований, и стоит выбирать дисплей. К сожалению, на данный момент не существует универсального экрана, на который можно было бы сказать, что он действительно лучше всех остальных. Из-за этого, если вам важна цветопередача, и вы собираетесь работать с фотографиями, то однозначно ваш выбор – это IPS матрицы. Но если вы заядлый любитель остросюжетных и ярких игр, то предпочтение все же лучше отдать TN+Film.

Все современные матрицы имеют достаточно высокие показатели, поэтому простые пользователи разницу могут даже не заметить, ведь IPS матрицы практически не уступают TN по времени отклика, а TN в свою очередь имеют довольно большие углы обзора. К тому же, как правило, пользователь располагается напротив экрана, а не сбоку или сверху, из-за чего большие углы в принципе не требуются. Но выбор все же за вами.

Выбирая себе монитор, телевизор или телефон, покупатель часто стает перед выбором типа экрана. Какому же из них отдать предпочтение: IPS или TFT? Причиной такого замешательства стало постоянное усовершенствование технологий по изготовлению дисплеев.

Все мониторы с TFT технологией можно разделить на три основных типа:

  1. TN+Film.
  2. PVA/MVA.

То есть, технология TFT представляет собой жидкокристаллический дисплей с активной матрицей , а IPS — это одна из разновидностей этой матрицы . И сравнение этих двух категорий не возможно, так как практически это одно и тоже. Но если все же разобраться более подробно в том, что собой представляет дисплей с TFT матрицей, то сравнение провести можно, но не между экранами, а между технологиями их изготовления: IPS и TFT-TN.

Общее понятие TFT

TFT (Thin Film Transistor) переводится, как тонкопленочный транзистор . В основе ЖК дисплея с технологией TFT лежит активная матрица. Такая технология подразумевает спиральное расположение кристаллов, которые в условиях сильного напряжения делают поворот таким образом, что экран стает черным. А при отсутствии напряжения большой мощности мы видим белый экран. Дисплеи с такой технологией на выходе выдают лишь темно-серый цвет вместо идеального черного. Поэтому TFT дисплеи пользуются популярностью в основном в изготовлении более дешевых моделей.

Описание IPS

Технология матрицы ЖК экрана IPS (In-Plane Switching) подразумевает параллельное расположение кристаллов по всей плоскости монитора . Спирали здесь отсутствуют. И поэтому кристаллы в условиях сильного напряжения не поворачиваются. Иными словами технология IPS — это ничто иное, как улучшенная TFT. Она намного лучше передает черный цвет, тем самым улучшая степень контрастности и яркости изображения. Именно поэтому данная технология стоит дороже, чем TFT, и используется в более дорогих моделях.

Основные отличия TN-TFT и IPS

Желая реализовать как можно больше продукции, менеджеры по продажам вводят людей в заблуждение о том, что TFT и IPS — это совершенно разные типы экранов. Специалисты из сферы маркетинга не дают исчерпывающих сведений о технологиях и это позволяет им выдавать уже существующую разработку за только что появившуюся.

Рассматривая IPS и TFT, мы видим, что это практически одно и тоже . Разница лишь в том, что монитор с IPS технологией являются более свежей разработкой, по сравнению с TN-TFT. Но несмотря на это, все же можно выделить ряд отличий между данными категориями:

  1. Повышенная контрастность . То, как отображается черный цвет, напрямую влияет на контрастность изображения. Если наклонить экран с технологией TFT без IPS, то прочитать что-либо будет практически не возможно. А все из-за того, что экран при наклоне стает темным. Если же рассматривать IPS матрицу, то, благодаря тому, что передача черного цвета производится кристаллами идеально, изображение получается достаточно четким.
  2. Передача цвета и количество отображаемых оттенков . Матрица TN-TFT не лучшим образом передает цвета. А все из-за того, что каждый пиксель имеет собственный оттенок и это приводит к искажению цвета. Экран с технологией IPS намного бережнее передает изображение.
  3. Задержка отклика . Одним из преимуществ TN-TFT экранов над IPS является высокоскоростной отклик. А все потому, что на поворот множества параллельных кристаллов IPS затрачивает много времени. Отсюда делаем вывод, что там, где скорость прорисовки имеет большое значение, лучше использовать экран с матрицей TN. Дисплеи с технологией IPS работают медленнее, но в повседневной жизни этого не заметно. А выявить данное различие можно лишь применив специально предназначенные для этого технологические тесты. Как правило, предпочтение лучше отдавать дисплеям с матрицей IPS.
  4. Угол обзора . Благодаря широкому углу обзора экран с технологией IPS не искажает изображения, даже если смотреть на него под углом в 178 градусов. При чем такое значение угла обзора может быть как по вертикали, так и по горизонтали.
  5. Энергоемкость . Дисплеи с IPS технологией, в отличии от TN-TFT, требуют больше энергии. Это обусловлено тем, что для того, чтобы повернуть параллельные кристаллы, нужно большое напряжение. В итоге на аккумулятор идет больше нагрузки, чем при использовании TFT матрицы. Если вам необходимо устройство с небольшой энергоемкостью, то TFT технология будет идеальным вариантом.
  6. Ценовая политика . В большинстве бюджетных моделей электроники используют дисплеи на основе TN-TFT технологии, поскольку этот вид матрицы является самым недорогим.На сегодняшний день мониторы с IPS матрицей хоть и стоят дороже, но их используют практически во всех современных электронных моделях. Это постепенно приводит к тому, что IPS матрица практически вытесняет оборудование с технологией TN-TFT.

Итоги

Исходя из всего выше сказанного, можно подвести следующий итог.

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями . Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.


В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...