Как выполняется компьютерное моделирование. Компьютерное моделирование или физическое испытание, что лучше

КОМПЬЮ́ТЕРНОЕ МОДЕЛИ́РОВАНИЕ (англ. computational simulation), построение с помощью компьютеров и компьютерных устройств (3D-сканеров, 3D-принтеров и др.) символьных [см. Символьное моделирование (s-моделирование)] и физических моделей объектов, изучаемых в науке (физике, химии и др.), создаваемых в технике (напр., в авиастроении, робототехнике), медицине (напр., в имплантологии, томографии ), искусстве (напр., в архитектуре , музыке) и др. областях деятельности людей.

К. м. позволяет многократно сократить затраты на разработку моделей по сравнению с некомпьютерными методами моделирования и проведением натурных испытаний. Оно делает возможным построение символьных компьютерных моделей объектов, для которых невозможно построить физические модели (напр., моделей объектов, изучаемых в климатологии ). Служит эффективным средством моделирования сложных систем в технике, экономике и др. областях деятельности. Является технологической основой систем автоматизированного проектирования (САПР).

Физические компьютерные модели изготавливаются на основе символьных моделей и являются прототипами моделируемых объектов (деталей и узлов машин, строительных конструкций и др.). Для изготовления прототипов могут быть применены 3D-принтеры, реализующие технологии послойного формирования неплоских объектов. Символьные модели прототипов могут быть разработаны с помощью САПРов, 3D-сканеров или цифровых камер и фотограмметрического программного обеспечения.

Система К. м. – это человеко-машинный комплекс, в котором построение моделей осуществляется с помощью компьютерных программ, реализующих математические (см. Моделирование математическое ) и экспертные (напр., имитационные) методы моделирования. В режиме вычислительного эксперимента исследователь имеет возможность, изменяя исходные данные, за относительно короткое время получить и сохранить в системе компьютерного моделирования большое число вариантов модели объекта.

Уточнение представлений об исследуемом объекте и совершенствование методов его моделирования могут сделать необходимым изменение программных средств системы компьютерного моделирования, а аппаратные средства при этом могут остаться без изменений.

Высокая результативность компьютерного моделирования в науке, технике и др. областях деятельности стимулирует развитие аппаратных средств (включая суперкомпьютеры) и программного обеспечения [в т. ч. инструментальных систем (см. Инструментальная система в информатике ) разработки параллельных программ для суперкомпьютеров].

В наши дни компьютерные модели – быстро растущая часть арсенала

Моделирование является одним из способов познания мира.

Понятие моделирования достаточно сложное, оно включает в себя огромное разнообразие способов моделирования: от создания натуральных моделей (уменьшенных и или увеличенных копий реальных объектов) до вывода математических формул.

Для различных явлений и процессов бывают уместными разные способы моделирования с целью исследования и познания.

Объект, который получается в результате моделирования, называется моделью . Должно быть понятно, что это совсем не обязательно реальный объект. Это может быть математическая формула, графическое представление и т.п. Однако он вполне может заменить оригинал при его изучении и описании поведения.

Хотя модель и может быть точной копией оригинала, но чаще всего в моделях воссоздаются какие-нибудь важные для данного исследования элементы, а остальными пренебрегают. Это упрощает модель. Но с другой стороны, создать модель – точную копию оригинала – бывает абсолютно нереальной задачей. Например, если моделируется поведение объекта в условиях космоса. Можно сказать, что модель – это определенный способ описания реального мира.

Моделирование проходит три этапа:

  1. Создание модели.
  2. Изучение модели.
  3. Применение результатов исследования на практике и/или формулирование теоретических выводов.

Видов моделирования огромное количество. Вот некоторые примеры типов моделей:

Математические модели . Это знаковые модели, описывающие определенные числовые соотношения.

Графические модели . Визуальное представление объектов, которые настолько сложны, что их описание иными способами не дает человеку ясного понимания. Здесь наглядность модели выходит на первый план.

Имитационные модели . Позволяют наблюдать изменение поведения элементов системы-модели, проводить эксперименты, изменяя некоторые параметры модели.

Над созданием модели могут работать специалисты из разных областей, т.к. в моделировании достаточно велика роль межпредметных связей.

Особенности компьютерного моделирования

Совершенствование вычислительной техники и широкое распространение персональных компьютеров открыло перед моделированием огромные перспективы для исследования процессов и явлений окружающего мира, включая сюда и человеческое общество.

Компьютерное моделирование – это в определенной степени, то же самое, описанное выше моделирование, но реализуемое с помощью компьютерной техники.

Для компьютерного моделирования важно наличие определенного программного обеспечения.

При этом программное обеспечение, средствами которого может осуществляться компьютерное моделирование, может быть как достаточно универсальным (например, обычные текстовые и графические процессоры), так и весьма специализированными, предназначенными лишь для определенного вида моделирования.

Очень часто компьютеры используются для математического моделирования. Здесь их роль неоценима в выполнении численных операций, в то время как анализ задачи обычно ложится на плечи человека.

Обычно в компьютерном моделировании различные виды моделирования дополняют друг друга. Так, если математическая формула очень сложна, что не дает явного представления об описываемых ею процессах, то на помощь приходят графические и имитационные модели. Компьютерная визуализация может быть намного дешевле реального создания натуральных моделей.

С появлением мощных компьютеров распространилось графическое моделирование на основе инженерных систем для создания чертежей, схем, графиков.

Начнем с определения слова моделирование.

Моделирование – процесс построения и использования модели. Под моделью понимают такой материальный или абстрактный объект, который в процессе изучения заменяет объект-оригинал, сохраняя его свойства, важные для данного исследования.

Компьютерное моделирование как метод познания основано на математическом моделировании. Математическая модель – это система математических соотношений (формул, уравнений, неравенств и знаковых логических выражений) отображающих существенные свойства изучаемого объекта или явления.

Очень редко удается использовать математическую модель для конкретных расчетов без использования вычислительной техники, что с неизбежностью требует создания некоторой компьютерной модели.

Рассмотрим процесс компьютерного моделирования более подробно.

2.2. Представление о компьютерном моделировании

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Компьютерное моделирование как новый метод научных исследований основывается на:

1. Построении математических моделей для описания изучаемых процессов;

2. Использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

2.3. Построение компьютерной модели

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов – сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

Итак, к основным этапам компьютерного моделирования относятся:

1. Постановка задачи, определение объекта моделирования:

на данном этапе происходит сбор информации, формулировка вопроса, определение целей, формы представления результатов, описание данных.

2. Анализ и исследование системы:

анализ системы, содержательное описание объекта, разработка информационной модели, анализ технических и программных средств, разработка структур данных, разработка математической модели.

3. Формализация, то есть переход к математической модели, создание алгоритма:

выбор метода проектирования алгоритма, выбор формы записи алгоритма, выбор метода тестирования, проектирование алгоритма.

4. Программирование:

выбор языка программирования или прикладной среды для моделирования, уточнение способов организации данных, запись алгоритма на выбранном языке программирования (или в прикладной среде).

5. Проведение серии вычислительных экспериментов:

отладка синтаксиса, семантики и логической структуры, тестовые расчеты и анализ результатов тестирования, доработка программы.

6. Анализ и интерпретация результатов:

доработка программы или модели в случае необходимости.

Существует множество программных комплексов и сред, которые позволяют проводить построение и исследование моделей:

Графические среды

Текстовые редакторы

Среды программирования

Электронные таблицы

Математические пакеты

HTML-редакторы

2.4. Вычислительный эксперимент

Эксперимент – это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий, чтобы определить, как реагирует экспериментальный образец на эти действия. Вычислительный эксперимент предполагает проведение расчетов с использованием формализованный модели.

Использование компьютерной модели, реализующей математическую, аналогично проведению экспериментов с реальным объектом, только вместо реального эксперимента с объектом проводится вычислительный эксперимент с его моделью. Задавая конкретный набор значений исходных параметров модели, в результате вычислительного эксперимента получают конкретный набор значений искомых параметров, исследуют свойства объектов или процессов, находят их оптимальные параметры и режимы работы, уточняют модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно, изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Более того, можно спрогнозировать поведение объекта в различных условиях. Для исследований поведения объекта при новом наборе исходных данных необходимо проведение нового вычислительного эксперимента.

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

2.5. Моделирование в различных средах

2.5.1. Моделирование в среде программирования

Моделирование в среде программирование включает в себя основные этапы компьютерного моделирования. На этапе построения информационной модели и алгоритма необходимо определить, какие величины являются входными параметрами, а какие – результатами, а также определить тип этих величин. При необходимости составляется алгоритм в виде блок-схемы, который записывается на выбранном языке программирования. После этого проводится вычислительный эксперимент. Для этого необходимо загрузить программу в оперативную память компьютера и запустить на выполнение. Компьютерный эксперимент обязательно включает в себя анализ полученных результатов, на основании которого могут корректироваться все этапы решения задачи (математическая модель, алгоритм, программа). Одним из важнейших этапов является тестирование алгоритма и программы.

Отладка программы (английский термин debugging (отладка) означает «вылавливание жучков» появился в 1945 году, когда в электрические цепи одного из первых компьютеров «Марк-1» попал мотылек и заблокировал одно из тысяч реле) – это процесс поиска и устранения ошибок в программе, производимы по результатам вычислительного эксперимента. При отладке происходит локализация и устранение синтаксических ошибок и явных ошибок кодирования.

В современных программных системах отладка осуществляется с использованием специальных программных средств, называемыми отладчиками.

Тестирование – это проверка правильности работы программы в целом, либо составных её частей. В процессе тестирования проверяется работоспособность программы, не содержащей явных ошибок.

Как бы тщательно ни была отлажена программа, решающим этапом, устанавливающим её пригодность для работы, является контроль программы по результатам её выполнения на системе тестов. Программу можно считать правильной, если для выбранной системы тестовых исходных данных во всех случаях получаются правильные результаты.

2.5.2. Моделирование в электронных таблицах

Моделирование в электронных таблицах охватывает очень широкий класс задач в разных предметных областях. Электронные таблицы – универсальный инструмент, позволяющий быстро выполнить трудоемкую работу по расчету и пересчету количественных характеристик объекта. При моделировании с использованием электронных таблиц алгоритм решения задачи несколько трансформируется, скрываясь за необходимостью разработки вычислительного интерфейса. Сохраняется этап отладки, включающий устранение ошибок данных, в связях между ячейками, в вычислительных формулах. Возникают также дополнительные задачи: работа над удобством представления на экране и, если необходим вывод полученных данных на бумажные носители, над их размещением на листах.

Процесс моделирования в электронных таблицах выполняется по общей схеме: определяются цели, выявляются характеристики и взаимосвязи и составляется математическая модель. Характеристики модели обязательно определяются по назначению: исходные (влияющие на поведение модели), промежуточные и то, что требуется получить в результате. Иногда представление объекта дополняется схемами, чертежами.

В настоящее время понятие “система” в науке является до конца не определенным. Ученые приступили к исследованию сложных систем (СС).

В многочисленной литературе по системному анализу и системотехнике отмечаются следующие основные свойства сложных систем:

Свойство 1 Целостность и членимость

Сложная система рассматривается как целостная совокупность элементов, характеризующаяся наличием большого количества взаимосвязанных и взаимодействующих между собой элементов.

У исследователя существует субъективная возможность разбиения системы на подсистемы, цели, функционирования которых подчинены общей цели функционирования всей системы (целенаправленность систем). Целенаправленность интерпретируется, как способность системы осуществлять в условиях неопределенности и воздействия случайных факторов поведение (выбор поведения), преследующее достижение определенной цели.

Свойство 2 Связи

Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящими по мощности (силе) связи (отношения) этих элементов с элементами, не входящими в данную систему (внешней средой).

Под “связями” понимается некоторый виртуальный канал, по которому осуществляется обмен между элементами и внешней средой веществом, энергией, информацией. Свойство 3 Организация

Свойство характеризуется наличием определенной организации – формированием существенных связей элементов, упорядоченным распределением связей и элементов во времени и пространстве. При формировании связей складывается определенная структура системы, а свойства элементов трансформируются в функции (действия, поведение).

При исследовании сложных систем обычно отмечают:

Сложность функции, выполняемой системой и направленной на достижение заданной цели функционирования;
наличие управления, разветвленной информационной сети и интенсивных потоков информации;

Наличие взаимодействия с внешней средой и функционирование в условиях неопределенности и воздействия случайных факторов различной природы.

Свойство 4 интегративные качества

Существование интегративных качеств (свойств), т.е. таких качеств, которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности. Наличие интегративных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью.

Примеры СС в экономической сфере многочисленны: организационно – производственная система, предприятие; социально – , например регион; и др. Методологией исследования СС является системный анализ. Один из важнейших инструментов прикладного системного анализа – компьютерное моделирование. Имитационное моделирование является наиболее эффективным и универсальным вариантом компьютерного моделирования в области исследования и управления сложными системами.

Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

В процессе моделирования всегда существует оригинал (объект) и модель, которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта.

Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм).

Исследование современных СС предполагает различные классы моделей. Развитие информационных технологий можно интерпретировать как возможность реализации моделей различного вида в рамках информационных систем различного назначения, например, информационные системы, системы распознавания образов, системы искусственного интеллекта, системы поддержки принятия решений. В основе этих систем лежат модели различных типов: семантические, логические, математические и т.п.

Приведем общую классификацию основных видов моделирования:

Концептуальное моделирование – представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков;
физическое моделирование – моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических процессов и явлений;
структурно – функциональное моделирование – моделями являются схемы (графы, блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;
математическое (логико-математическое) моделирование – построение модели осуществляется средствами математики и логики;
имитационное (программное) моделирование – в этом случае логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все перечисленные виды моделирования или отдельные приемы). Так, например, имитационное моделирование включает в себя концептуальное (на ранних этапах формирования имитационной модели) и логико-математическое (включая методы искусственного интеллекта) моделирование для описания отдельных подсистем модели, а также в процедурах обработки и анализа результатов вычислительного эксперимента и принятия решений. Технология проведения и планирования вычислительного эксперимента с соответствующими математическими методами привнесена в имитационное моделирование из физического (экспериментального натурного или лабораторного) моделирования. Наконец, структурно-функциональное моделирование используется как при создании стратифицированного описания многомодельных комплексов, так и для формирования различных диаграммных представлений при создании имитационных моделей.

Понятие компьютерного моделирования трактуется шире традиционного понятия “моделирование на ЭВМ”. Приведем его.

Компьютерное моделирование – это метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Компьютерное моделирование можно рассматривать как:

Математическое моделирование;
имитационное моделирование;
стохастическое моделирование.

Под термином “компьютерная модель” понимают условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта. Компьютерные модели, описанные с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, будем называть математическими. Компьютерные модели, описанные с помощью взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта, будем называть структурно-функциональными.

Компьютерные модели (отдельную программу, совокупность программ, программный комплекс), позволяющие, с помощью последовательности вычислений и графического отображения результатов ее работы, воспроизводить (имитировать) процессы функционирования объекта (системы объектов) при условии воздействия на объект различных, как правило, случайных факторов, будем называть имитационными.

Суть компьютерного моделирования заключена в получении количественных и качественных результатов на имеющейся модели. Качественные результаты анализа обнаруживают неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер анализа существующей СС или прогноза будущих значений некоторых переменных. Возможность получения не только качественных, но и количественных результатов составляет существенное отличие имитационного моделирования от структурно-функционального. Имитационное моделирование имеет целый ряд специфических черт.

Методологией компьютерного моделирования является системный анализ (направление кибернетики, общая ), в котором доминирующая роль отводится системным аналитикам. В отличие от математического моделирования на ЭВМ, где методологической основой являются: исследование операций, теория математических моделей, теория принятия решений, теория игр и др.

Центральной процедурой системного анализа является построение обобщенной модели, отражающей все факторы и взаимосвязи реальной системы. Предметом компьютерного моделирования может быть любая сложная система, любой объект или процесс. Категории целей при этом могут быть самыми различными. Компьютерная модель должна отражать все свойства, основные факторы и взаимосвязи реальной сложной системы, критерии, ограничения.

Компьютерное моделирование предлагает совокупность методологических подходов и технологических средств, используемых для подготовки и принятия решений в различных областях исследования.

Выбор метода моделирования для решения постановленной задачи или исследования системы является актуальной задачей, с которой системный аналитик должен уметь справляться.

С этой целью уточним место имитационных моделей и их специфику среди моделей других классов. Кроме того, уточним некоторые понятия и определения, с которыми имеет дело системный аналитик в процессе моделирования. С этой целью рассмотрим процедурно-технологическую схему построения и исследования моделей сложных систем.

Эта схема включает, характерные для любого метода моделирования, следующие этапы определения:

1. Системы (предметная, проблемная область);
2. Объекта моделирования;
3. Целевого назначения моделей;
4. Требований к моделям;
5. Формы представления;
6. Вида описания модели;
7. Характера реализации модели;
8. модели.

Первые три этапа характеризуют объект и цель исследования и практически определяют следующие этапы моделирования. При этом большое значение приобретает корректное описание объекта и формулировка цели моделирования из предметной области исследования.

Предметная (проблемная) область. Исследование различных систем: математических, экономических, производственных, социальных, систем массового обслуживания, вычислительных, информационных и многих других.

Модель должна строиться целенаправленно. Целенаправленная модель представляет собой замену действительности с той степенью абстракции, которая необходима для поставленной цели. То есть, модель, прежде всего, должна отражать те существенные свойства и те стороны моделируемого объекта, которые определены задачей. При этом важно правильно обозначить и сформулировать проблему, четко определить цель исследования, проводимого с помощью моделирования.

Требования к моделям. Моделирование связано с решением реальных задач и необходимо быть уверенным, что результаты моделирования с достаточной степенью точности отражают истинное положение вещей, т.е. модель адекватна реальной действительности.

Хорошая модель должна удовлетворять некоторым общепринятым требованиям. Такая модель должна быть:

Адекватной;
надежной;
простой и понятной пользователю;
целенаправленной;
удобной в управлении и обращении;
функционально полной с точки зрения возможностей решения главных задач;
адаптивной, позволяющей легко переходить к другим модификациям или обновлять данные;
допускающей изменения (в процессе эксплуатации она может усложняться).

В зависимости от целевой направленности модели, для нее задаются специальные требования. Наиболее характерными являются: целостность, отражение информационных свойств, многоуровневость, множественность (многомодельность), расширяемость, универсальность, осуществимость (реальная возможность построения самой модели и ее исследования), реализуемость (например, на ЭВМ, возможность материализации модели в виде реальной системы в задачах проектирования), эффективность (затраты временных, трудовых, материальных и других видов ресурсов на построение моделей и проведение экспериментов находятся в допустимых пределах или оправданы). Значимость или приоритетность требований к модели непосредственно вытекают из назначения модели. Например, в исследовательских задачах, задачах управления, планирования и описания важным требованием является адекватность модели объективной реальности. В задачах проектирования и синтеза уникальных систем важным требованием является реализуемость модели, например в САПР или систему поддержки принятия решений (СППР).

Цель моделирования и задание требований к модели определяют форму представления модели.

Любая модель (прежде чем стать объективно существующим предметом) должна существовать в мысленной форме, быть конструктивно разработанной, переведена в знаковую форму и материализована.

Таким образом, можно выделить три формы представления моделей:

Мысленные (образы);
знаковые (структурные схемы, описания в виде устного и письменного изложения, логические, математические, логико-математические конструкции);
материальные (лабораторные и действующие макеты, опытные образцы).

Особое место в моделировании занимают знаковые, в частности логические, математические, логико-математические модели, а также модели, воссозданные на основе описания, составленного экспертами. Знаковые модели используются для моделирования разнообразных систем. Это направление связано с развитием вычислительных систем. Ограничимся ими в дальнейшем рассмотрении.

Следующий этап процедурной схемы – это выбор вида описания и построения модели.

Для знаковых форм такими описаниями могут быть:

Отношение и исчисление предикатов, семантические сети, фреймы, методы искусственного интеллекта и др. - для логических форм.
алгебраические, дифференциальные, интегральные, интегрально-дифференциальные уравнения и др. - для математических форм.

Характер реализации знаковых моделей бывает:

Аналитический (например, система дифференциальных уравнений может быть решена математиком на листе бумаги);
машинный (аналоговый или цифровой);
физический (автоматный).

В каждом из них, в зависимости от сложности модели, цели моделирования, степени неопределенности характеристик модели, могут иметь место различные по характеру способы проведения исследований (экспериментов), т.е., методы исследования. Например, при аналитическом исследовании применяются различные математические методы. При физическом или натурном моделировании применяется экспериментальный метод исследования.

Анализ применяемых и перспективных методов машинного экспериментирования позволяет выделить расчетный, статистический, имитационный и самоорганизующийся методы исследований.

Расчетное (математическое) моделирование применяется при исследовании математических моделей и сводится к их машинной реализации при различных числовых исходных данных. Результаты этих реализаций (расчетов) выдаются в графической или табличной формах. Например, классической схемой является машинная реализация математической модели, представленной в виде системы дифференциальных уравнений, основанная на применении численных методов, с помощью которых математическая модель приводится к алгоритмическому виду, программно реализуется на ЭВМ, для получения результатов проводится расчет.

Имитационное моделирование отличается высокой степенью общности, создает предпосылки к созданию унифицированной модели, легко адаптируемой к широкому классу задач, выступает средством для

Нет абсолютно никаких сомнений в том, что компьютерное моделирование различных физических процессов значительно ускорило процесс разработки технической продукции, при этом позволило сэкономить разработчикам неплохие деньги на сборке испытательных моделей. С помощью современных вычислительных мощностей и программного обеспечения инженеры могут моделировать работу отдельных компонентов и узлов сложных систем, что позволит снизить количество проводимых физических испытаний, которые необходимы перед запуском нового продукта. Также производители могут провести подсчет стоимости разработки после проведения моделирования с помощью CAD систем, а не ждать конца физических испытаний продукта.

Современная промышленность при запуске новых продуктов сталкивается с такими проблемами как время на разработку нового изделия и стоимость разработки. А в автомобилестроении и аэрокосмической отрасли без CAD моделирования практически невозможно обойтись, так как моделирование помогает значительно ускорить разработку и снизить затраты, что очень важно на современном рынке. Исторически сложилось, что появление современных вычислительных систем, которые способны моделировать динамические свойства объектов при различных воздействиях, отодвинуло на второй план модернизацию стендов для физических испытаний, а также разработку методик проведения испытаний. Многие организации стараются выбрать моделирование, так как оно требует минимум затрат и минимум времени на разработку. Однако, в некоторых исследованиях точный ответ может дать только процесс проведения физического испытания изделия. Без более тесного взаимодействия между электронными моделями и физическими испытаниями многие организации могут стать чрезмерно зависимыми от компьютерных моделей для разработки, которые при неправильном использовании могут в последующем привести к непредвиденным сбоям в работе дорогостоящего оборудования.

В автомобильной промышленности компьютерное моделирование становится неотъемлемой частью, так как конструкции современных автомобилей значительно усложнились, а системы компьютерного моделирования значительно улучшились. Однако, к сожалению, многие производители сводят физические испытания продукции к минимуму, полагаясь на результаты компьютерного моделирования.

Процессы физических испытаний не поспевают за компьютерным моделированием в совершенствовании методик. Инженеры, проводящие испытания, обычно стараются проводить минимально необходимые тесты над изделием. Как результат – более частые повторы испытаний для получения более достоверных результатов или их подтверждение. Ставка чисто на компьютерное моделирование без проведения физического испытания может привести к очень серьезным последствием в будущем, так как математическая модель изделия, на основании которой производится процесс вычисления динамических свойств, создается с определенными допущениями, и в реальной работе изделие может вести себя немного по-другому, чем отображалось на мониторе.

Компьютерное моделирование имеет симбиотическое отношение с физическими испытаниями оборудования, которые позволяют (в отличии от компьютерной модели) получить экспериментальные данные. Поэтому, отставания в технологиях тестирования готовых устройств, при таком росте возможностей вычислительной техники, может привести к излишней экономии на экспериментальных образцах с последующими проблемами в готовых изделиях. Точность моделей напрямую зависит от входных данных о поведении модели (математическое описание) в различных условиях.

Конечно, элементы моделей не могут включать в себя все возможные варианты и условия поведения определенных компонентов, так как сложность расчетов и громоздкость математической модели стали бы просто огромными. Для упрощения математической модели принимают определенные допущения, которые «не должны» оказывать существенное влияние на работу механизма. Но, к сожалению, реальность всегда гораздо более сурова. Например, математическая модель не сможет просчитать, как поведет себя устройство в случае наличия в материале микротрещин, или при резком изменении погоды, которое может привести к совершенно иному распределению нагрузки в конструкции. Экспериментальные данные и посчитанные данные довольно часто отличаются друг от друга. И это необходимо помнить.

Есть еще один важный плюс в сторону физического испытания оборудования. Это способность указать инженерам недочёты при составлении математических моделей, а также предоставляет неплохую возможность для открытия новых явлений и совершенствования старых методик расчетов. Ведь согласитесь, что если вбить в математическую формулу переменные, то результат будет зависеть от переменных, а не от формулы. Формула будет оставаться всегда постоянной, и только реальное физическое испытание способно ее дополнить или изменить.

Появление новых материалов во всех отраслях современной промышленности создает дополнительные проблемы для компьютерного моделирования. Если бы инженеры продолжали использовать уже проверенные временем материалы и совершенствованные их математические описания то тогда да, проблемы с моделированием были бы значительно меньше. А вот появление новых материалов требует в обязательном порядке проводить физические испытания готовых изделий с этими материалами. Тем не менее, новые элементы все чаще появляются на рынке и тенденции роста только идут вверх.

Например, в аэромобильной и автомобильной промышленности были быстро приняты композитные материалы из-за их хорошей удельной прочности. Одним из основных проблем компьютерного моделирования является не способность модели точно прогнозировать поведение материала, который испытывает определенный недостаток характеристик, по сравнению с материалами из алюминия, стали, пластмассы и прочих, которые уже давно используются в этой отрасли.

Проверка верности компьютерных моделей для композитных материалов имеет решающее значение на этапе проектирования. После проведения расчетов необходимо собрать стенд для испытаний на реальной детали. При проведении физических тестов для измерения деформации и распределению нагрузки, инженеры сосредотачивают свое внимание на критических точках, определенных с помощью компьютерной модели. Для сбора информации о критических точках применяют тензодатчики. Этот процесс поддается мониторингу только для ожидаемых проблем, которые могут создать «белые пятна» в процессе тестирования. Без всеобъемлющих исследований подлинность модели может подтвердиться, хотя на самом деле это будет не так.


Также существует проблема и в постепенно устаревающих технологиях измерения, например, тензодатчики и термопары не позволяют охватить весь необходимый диапазон измерений. По большей части традиционные датчики способны измерить необходимую величину только на отдельных участках, не позволяя глубоко проникнуть в суть происходящего. В результате ученые вынуждены полагаться на предварительно смоделированные процессы, которые показывают уязвимые места и заставляют тестировщиков обратить повышенное внимание на тот или иной узел испытуемой системы. Но как всегда есть одно но. Этот подход неплохо применяется к уже проверенным временем и хорошо изученным материалам, но для конструкций, включающих в себя новые материалы, это может навредить. Поэтому инженеры-конструкторы во всех отраслях промышленности пытаются максимально обновить старые способы измерений, а также внедрить новые, которые позволят проводить более детальные измерения, чем старые датчики и методики.

Тензометрические технологии практически не менялись после их изобретения десятилетия назад. Новые технологии, такие как , способны измерять полную напряженность поля и температуру. В отличии от устаревших тензометрических технологий, которые могут собирать информацию только в критических точках, волоконно-оптические датчики могут собирать непрерывные данные о деформации и температуре. Эти технологии гораздо более выгодны при проведении физических испытаний, так как позволяют инженерам наблюдать за поведением исследуемой структуры в критических точках и между ними.

Например, волоконно-оптические датчики могут быть встроены внутрь композитных материалов во время простоя для того, чтобы лучше понять процессы вулканизации. Общим недостатком, например, может являться процесс сморщивания в одном из слоев материала, который вызывает внутри механическое напряжение. Данные процессы еще очень плохо изучены и существует очень мало информации о напряженности и деформации внутри композитных материалов, что делает практически невозможным применения к ним компьютерного моделирования.

Устаревшие технологии тензорезисторов вполне способны обнаружить остаточные деформации в композитных материалах, но только в том случае, когда поле деформации достигает поверхности и датчик установлен строго в нужном месте. С другой стороны пространственно-непрерывные технологии измерения, такие как волоконно-оптические, могут измерять все данные о напряженности поля в критических точках и между ними. Также ранее упоминалось, что волоконно-оптические датчики могут встраиваться в композитные материалы для исследования внутренних процессов.

Процесс разработки считается завершенным, когда продукт прошел все испытания и начал отгружаться потребителям. Однако, современный уровень позволяет производителям получить первые отчеты об их продукции сразу же после начала ее эксплуатации пользователями. Как правило, сразу после выхода серийного продукта начинается работа над его модернизацией.

Компьютерные модели и физические испытания идут нога в ногу. Они просто не могут существовать друг без друга. Дальнейшее развитие технологий требует максимального взаимодействия между этими средствами проектирования. Инвестиции в продвижение данных физических исследований требуют первоначально больших вложений, однако «отдача» также обрадует. Но, к сожаление, большинство разработчиков стараются получить выгоду здесь и сейчас и совершенно не заботятся о долгосрочных перспективах, выгод от которых, как правило, значительно больше.

Те, кто стремится обеспечить долгосрочные перспективы для своей продукции, будут стремиться к внедрению более инновационных и надежных методик и элементов тестирования изделий, таких как оптоволоконные измерения. Объединение технологий компьютерного моделирования и физических испытаний в будущем будет только крепнуть, ведь они дополняют друг друга.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...