Русский datasheet на микросхему ne555, схема включения. Интегральный таймер NE555 - история, устройство и приницип работы

Рассмотрим примеры практического применения данной микросхемы

Триггер Шмидта.

Это очень простая, но эффективная схема. Схема позволяет, подавая на вход аналоговый сигнал, получить чистый прямоугольный сигнал на выходе

- - - - - - - - - - - - - - - - - -

Простой таймер включения устройства в ~220V.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Схема для получения более точных интервалов .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Практическое применение в статье ШИМ для вентилятора

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Сумеречный выключатель .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Управление устройством с помощью одной кнопки .

Вариант исполнения такой схемы находится в этом блоге .

Аналогичная схема управление одной кнопкой на микросхеме CD4013 (аналог 561TM2)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Контроль уровня воды.

Схема для включения светодиодной подсветки от автономного питания, на 10- 30секунд.

Один вариант из применения, встраивается во входную дверь в районе замочной скважины.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Подсветка включается посредством нажатия кнопки на дверной ручке - в результате не возникнет проблем с открытием замка при отсутствии естественного либо искусственного освещения.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Кодовый замок на таймере NE555.

Подобной разработки кодового замка на таймере NE555, в интернете я пока не встречал, поэтому эта разработка посвящается всем любителям этой чудесной микросхемы.
Схему на микросхеме NE555 в виде кодового замка на дверь или сейф, нетрудно реализовать на этом таймере.
Еще я знаю, что 555 нормально работает при отрицательных температурах,(если предстоит эксплуатация на улице) и более широкий диапазон напряжения питания до 16V. Надежность микросхемы не подлежит сомнению.

И так привожу в пример схему, цифровой код в которой будет состоять из 4 цифр (технически схему можно реализовать и на одной кнопке, но это будет слишком банально, я думаю что 4 цифры для начала самый раз, наращивать количество цифр в коде этой схемы можно до бесконечности,(одинаковыми частями по блочно, обвел на схеме U2).
В приведенной схеме все 4 таймера работают по одной схеме, имеются небольшие отличия в таймерах U1, U4. Схема U2 и U3 повторяются один в один.
Каждый таймер в этой схеме может быть настроен на своё рабочее время, на это задействована время задающая цепочка R1, R2, C1.
А также секретность кода можно увеличить подключив доп. коммутирующие диоды.(в качестве примера привел включение одного диода D1, большее не рисовал, так как думаю, что тогда схема будет восприниматься очень сложно).
Главное отличие этой схемы на таймерах 555, от подобных схем, наличие настройки рабочего времени каждого таймера, при простоте этой схемы, вероятность подбора кода посторонним лицом будет очень невелик.

Работа схемы;
- Нажимаем кнопку ноль, запускается таймер U1, его рабочее время настроено на удержание логической единицы (вывод 3) в течении 30 сек, после этого можно нажать кнопку 1.
- Нажимаем кнопку 1 таймер U2, его рабочее время настроено на 2 сек., в течении этого времени надо нажать кнопку 2 (иначе U2 удержание логической единицы (вывод 3) сбрасывается и нажатие кн. 2 не будет иметь смысла)
- Нажимаем кнопку 2, таймер U3 настроен на удержание логической единицы (вывод 3) в течении 25 сек, после этого можно нажать кнопку 3, но ……….. смотрим на коммутирующий диод D1, из за него кнопку 3 нет смысла быстро нажимать, пока не закончится 30 секундное рабочее время таймера U1,
- После нажатия кнопки 3, таймер U4 выдает логическую единицу (U4 вывод 3)на исполнительное устройство.
Еще остается добавить что, в действующем устройстве цифровой код будет расположен не по порядку номеров, а хаотично,
и любое нажатие других кнопок будет сбрасывать таймеры в 0.
Ну в общем пока всё, все варианты использования тут не описать, вижу что не все, я здесь в описании затронул …… в общем если есть идея, ее техническая реализация всегда найдётся.
Все настройки, рабочего времени микросхем U1…….U4 являются тестовыми, и описаны здесь для примера. :)
(в охранных системах для непрошеных гостей самое трудное, это индивидуальные решения, доказано временем)
Прикладываю архив со схемой в протеус, в нем работу схемы можно оценить наглядно.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Назначение восьми ног микросхемы.

1. Земля.

Вывод, который подключается к минусу питания и к общему проводу схемы.
2. Запуск.
Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb,) и конденсатором С - это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.

3. Выход.
Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий - высокий уровень происходит приблизительно за 100 нс.
4. Сброс.
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и есть reset. Входное напряжение не зависит от величины напряжения питания - это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод рекомендуется подключить к плюсу питания, пока в нем нет необходимости.
5. Контроль.
Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.
6. Останов.
Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.
7. Разряд.
Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

Теория Практика Добавить тег

Теория и практика применения таймера 555.Часть вторая.

Часть вторая. Практическая.

В этой части мы продолжим ездить по вашим мозгам на таймере 555, однако уже с практической точки зрения - рассмотрим конкретные схемы включения микросхемы.
Итак,
Схема 1:

Эта штуковина начинает работать (пищать) если по каким-то причинам станет вдруг темно. То есть, на фоторезистор LDR1 перестанет попадать свет или световой поток уменьшится до некоего критического уровня.

Эта схема предназначена для раздражения слухового нерва в том случае, если напряжение на входе "Контроль" упадет ниже 9 вольт.

Простейший вид узла сигнализации. Если датчик S2 замкнется, на выходе таймера появится высокий уровень и останется таковым, даже если датчик вернется в исходное состояние. Вернуть низкий уровень на выход микросхемы можно кнопкой "Сброс".

Аналогична Схеме 1, правда можно подстраивать частоту тона пищания резистором R2.

Метроном. Издает мерное тикание, чтобы начинающие музыканты не сбивались с ритма, ну или хорошо спали. Частота тиков подстраивается резистором R1.

10-минутный таймер. Запускается нажатием на кнопку "Сброс-запуск", при этом загорается светодиод HL2, например - зеленый. По истечении временного интервала, загорится светодиод HL1, например - красный. Интервал можно подстроить резистором R4.

Триггер Шмидта. Полезная вещь, если вам необходимо получить прямоугольные импульсы из синусоидального сигнала, даже искаженного и зашумленного.

Генератор повышенной точности и стабильности. Частота подстраивается резистором R1. Диоды - любые германиевые. Можно также применить диоды Шоттки.

Детектор пропущенных импульсов. Может пригодиться. Транзистор можно заменить на отечественный КТ3107.

Твухтональная сирена. Занятная схема для экспериментов с включением двух таймеров сразу.

Ну пока все.
Вопросы, как обычно, складываем

При современном развитии электроники в Китае, купить, кажется, можно все, что душе угодно: начиная от домашних кинотеатров и компьютеров и заканчивая такими простейшими изделиями, как электрические розетки и вилки.

Где-то между ними находятся , мигающие елочные гирлянды, часы с термометрами, регуляторы мощности, терморегуляторы, фотореле и многое другое. Как говорил великий сатирик Аркадий Райкин в монологе про дефицит: «Пусть все будет, но пусть чего-то не хватает!» В общем, не хватает как раз того, что входит в «репертуар» простых радиолюбительских конструкций.

Несмотря на такую конкуренцию со стороны китайской промышленности, интерес самодеятельных конструкторов к этим простым конструкциям не потерян до сих пор. Они продолжают разрабатываться и в ряде случаев находят достойное применение в устройствах малой домашней автоматизации. Многие из этих устройств появились на свет благодаря (отечественный аналог КР1006ВИ1).

Это уже упомянутые фотореле, различные простые системы сигнализации, преобразователи напряжения, ШИМ - регуляторы двигателей постоянного тока и многое другое. Далее будут описаны несколько практических конструкций, доступных для повторения в домашних условиях.

Фотореле на таймере 555

Фотореле, показанное на рисунке 1, предназначено для управления освещением.

Рисунок 1.

Алгоритм управления традиционный: вечером при снижении освещенности лампочка включается. Выключение лампочки происходит утром, когда освещенность достигнет нормального уровня. Схема состоит из трех узлов: измеритель освещенности, узел включения нагрузки и блок питания. Описание работы схемы лучше начать задом - наперед, - блок питания, узел включения нагрузки и измеритель освещенности.

Блок питания

В подобных конструкциях, как раз тот самый случай, когда резонно применить, нарушая все рекомендации техники безопасности, блок питания, не имеющий гальванической развязки от сети. На вопрос, почему такое возможно, ответ будет таков: после настройки устройства никто в него не полезет, все будет находиться в изолирующем корпусе.

Наружных регулировок тоже не предвидится, после настройки останется только закрыть крышку и повесить готовое на место, пусть себе работает. Конечно, если есть необходимость, то единственную настройку «чувствительность», можно вывести наружу при помощи длинной пластмассовой трубки.

В процессе настройки безопасность можно обеспечить двумя путями. Либо воспользоваться развязывающим трансформатором () либо запитать устройство от лабораторного блока питания. При этом сетевое напряжение и лампочку можно не подключать, а срабатывание фотоэлемента контролировать по светодиоду LED1.

Схема блока питания достаточно проста. Она представляет мостовой выпрямитель Br1 с гасящим конденсатором C2 на переменное напряжение не менее 400В. Резистор R5 предназначен для сглаживания броска тока через конденсатор C14 (500,0мкФ * 50В) при включении устройства, а также «по совместительству» является предохранителем.

Стабилитрон D1 предназначен для стабилизации напряжения на C14. В качестве стабилитрона подойдет 1N4467 или 1N5022A. Для выпрямителя Br1 вполне подойдут диоды 1N4407 или любой маломощный мост, с обратным напряжением 400В и выпрямленным током не менее 500мА.

Конденсатор C2 следует зашунтировать резистором сопротивлением около 1МОм (на схеме не показан), чтобы после отключения устройства не «щелкало» током: убить, конечно, не убьет, но все же достаточно чувствительно и неприятно.

Узел включения нагрузки

Выполнен с применением специализированной микросхемы КР1182ПМ1А, которая позволяет сделать немало полезных устройств. В данном случае она используется для управления симистором КУ208Г. Лучшие результаты дает импортный «аналог» BT139 - 600: ток нагрузки 16А при обратном напряжении 600В, а ток управляющего электрода намного меньше, чем у КУ208Г (иногда КУ208Г приходится подбирать по этому показателю). BT139 способен выдерживать импульсные перегрузки до 240А, что делает его исключительно надежным при работе в различных устройствах.

Если BT139 установлен на радиаторе, то коммутируемая мощность может достигать 1КВт, без радиатора допустимо управление нагрузкой до 400Вт. В том случае, когда мощность лампочки не превышает 150Вт, можно вполне обойтись без симистора. Для этого правый по схеме вывод лампы La1 следует присоединить непосредственно в выводам 14, 15 микросхемы, а резистор R3 и симистор T1 из схемы исключить.

Поехали дальше. Микросхема КР1182ПМ1А управляется через выводы 5 и 6: когда они замкнуты лампа погашена. Тут может быть обычный контактный выключатель, правда, работающий наоборот, - выключатель замкнут, а лампа погашена. Так намного проще запомнить эту «логику».

Если этот контакт разомкнуть, то начинает заряжаться конденсатор C13 и, по мере возрастания напряжения на нем, плавно возрастает яркость свечения лампы. Для ламп накаливания это очень актуально, поскольку увеличивает срок их службы.

Подбором резистора R4 можно регулировать степень заряда конденсатора C13 и яркость свечения лампы. В случае использования энергосберегающих ламп конденсатор C13 можно не ставить, как собственно и саму КР1182ПМ1А. Но об этом будет сказано ниже.

Теперь приближаемся к главному. Вместо реле, просто из стремления избавиться от контактов, управление было поручено транзисторному оптрону АОТ128, который с успехом можно заменить импортным «аналогом» 4N35, правда, при такой замене номинал резистора R6 следует увеличить до 800КОм…1МОм, поскольку при 100КОм импортный 4N35 работать не будет. Проверено практикой!

Если транзистор оптрона будет открыт, его переход К-Э, подобно контакту, замкнет выводы 5 и 6 микросхемы КР1182ПМ1А и лампа будет выключена. Чтобы открыть этот транзистор требуется засветить светодиод оптрона. В общем, получается все наоборот: светодиод погашен, а лампа светит.

На основе 555 получается очень просто. Для этого достаточно на входы таймера подключить соединенные последовательно фоторезистор LDR1 и подстроечный резистор R7, с его помощью настраивается порог срабатывания фотореле. Гистерезис переключения (темно - светло) обеспечивается самим таймером, его . Помните, эти «волшебные» цифры 1/3U и 2/3U?

Если фотодатчик находится в темноте, его сопротивление велико, поэтому напряжение на резисторе R7 низкое, что приводит к тому, что на выходе таймера (вывод 3) устанавливается высокий уровень и светодиод оптрона погашен, а транзистор закрыт. Следовательно, лампочка будет включена, как было написано ранее в подзаголовке «Узел включения нагрузки».

В случае освещения фотодатчика его сопротивление становится маленьким, порядка нескольких КОм, поэтому напряжение на резисторе R7 возрастает до 2/3U, и на выходе таймера появляется низкий уровень напряжения, - светодиод оптрона засветился, а лампа-нагрузка погасла.

Вот тут кто-то может скажет: «Сложновато будет!». Но почти всегда все можно упростить до предела. Если предполагается зажигать энергосберегающие лампы, то плавное включение не требуется, и можно использовать обычное реле. А кто сказал, что только лампы и только включать?

Если реле имеет несколько контактов, то можно делать что душе угодно, и не только включать, но и выключать. Такая схема показана на рисунке 2 и в особых комментариях не нуждается. Реле подбирается из условий, чтобы ток катушки был не более 200мА при рабочем напряжении 12В.

Рисунок 2.

Схемы предварительной установки

В некоторых случаях требуется что-либо включать с некоторой задержкой относительно включения питания устройства. Например, сначала подать напряжение на логические микросхемы, и через некоторое время питание выходных каскадов.

Такие задержки реализуются на таймере 555 достаточно просто. Схемы таких задержек и временные диаграммы работы показаны на рисунках 3 и 4. Пунктирной линией показаны напряжения источника питания, а сплошной на выходе микросхемы.

Рисунок 3. После включения питания на выходе с задержкой появляется высокий уровень.

Рисунок 4. После включения питания на выходе с задержкой появляется низкий уровень.

Чаще всего такие «установщики» используются как составные части более сложных схем.

Устройства сигнализации на таймере 555

Схема сигнализатора представляет собой , с которым мы уже давно познакомились.

Рисунок 5.

В емкость с водой, например, бассейн погружены два электрода. Пока они находятся в воде, сопротивление между ними невелико (вода хороший проводник), поэтому конденсатор C1 зашунтирован, напряжение на нем близко к нулю. Также нулевое напряжение на входе таймера (выводы 2 и 6), следовательно на выходе (вывод 3) установится высокий уровень, генератор не работает.

Если уровень воды почему-то упадет и электроды окажутся в воздухе, сопротивление между ними увеличится, в идеале просто обрыв, и конденсатор C1 шунтироваться не будет. Поэтому наш мультивибратор заработает, - на выходе появятся импульсы.

Частота этих импульсов зависит от нашей фантазии и от параметров RC цепи: это будет либо мигающая лампочка, либо противный писк динамика. Попутно с этим можно включить долив воды. Чтобы избежать перелива и вовремя отключить насос к устройству необходимо добавить еще один электрод и подобную же схему. Тут уже читателю можно поэкспериментировать.

Рисунке 6.

При нажатии на концевой выключатель S2 на выходе таймера появляется напряжение высокого уровня, и останется таковым даже если S2 отпустить и больше не удерживать. Из этого состояния устройство можно вывести только нажатием на кнопку «Сброс».

Пока на этом остановимся, может кому потребуется время, чтобы взять паяльник и попробовать спаять рассмотренные устройства, исследовать, как они работают, хотя бы поэкспериментировать с параметрами RC цепей. Послушать, как пищит динамик или мигает светодиод, сравнить, что дают расчеты, намного ли практические результаты отличаются от расчетных.

555 Таймер IC является одним из наиболее часто используемых ИМС среди студентов и любителей. Есть много применений этой микросхемы, в основном используется в качестве вибраторов, АСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР, МОНОСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР и БИСТАБИЛЬНОГО МУЛЬТИВИБРАТОРА. В данной статье попробуем охватить различные аспекты таймера 555 IC и объяснить его работу в деталях. Так что давайте сначала определим понятия, что такое нестабильные, одностабильные и бистабильные вибраторы.

АСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР

Это означает, что не будет никакого стабильного уровня на выходе. Так что на выходе будет, колебания между высоким и низким уровнем. Эти параметры нестабильного выхода используется как часы для прямоугольной формы выхода для многих приложений.

ОДНОСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР

Это означает, что будет одно устойчивое состояние и одно неустойчивое состояние. В устойчивом состоянии может быть выбран высокий или низкий уровень самим пользователем. Если стабилизированный выход выбирается высокой, то Таймер всегда пытается поставить высокий уровень на выходе. Поэтому, с низким состоянием уровня Таймер выключается на короткое время и это состояние называют неустойчивым в течении этого времени. Если в стабильное состояние выбирается минимальное значение, и прерывание выхода переходит в состояние высокого на короткое время до прихода низкого значения.

[Узнать больше о одностабильный мультивибратор: 555 Таймер Одностабильный Мультивибратор схема]

БИСТАБИЛЬНОГО МУЛЬТИВИБРАТОРА

Это означает выходное состояние стабильно. С каждым прерыванием выход изменяется и остается как есть. Например выход считается высоким сейчас с перерывом она снижается и остается низким. В следующий перерыв он идет высоким.

[Узнать больше о бистабильного мультивибратора: 555 Таймер IC Бистабильного Мультивибратора цепи]

Важные характеристики Таймера IC 555

NE555 IC и 8 пин устройства. Важные электрические характеристики Таймер заключаются в том, что он не должен включаться выше 15В, это означает, что источник напряжения не может быть выше 15В. Во-вторых, мы не можем сделать больше, чем 100мА с чипа. Если не будете следовать этим, микросхема будет сожжена или повреждена.

Объяснение работы

Таймер в основном состоит из двух основных конструкционных элементов, и они являются:

1.Компараторов (два) или два ОУ

2.Один SR мультивибратор (выбор сброса триггера)

Как показано выше есть только два важных компонента в Таймере, это два компаратора и триггер. Необходимо понять что такое компаратор и триггер .

это просто устройство, которое сравнивает напряжение на входных клеммах (инвертирующий (-VE) и неинвертирующий (+VE)). Поэтому в зависимости от разницы в положительной клеммой и отрицательной клеммой на входе в порт, определяется выход компаратора.

Для примера рассмотрим, положительная входная клемма напряжения будет +5В и отрицательной входной клемме будет напряжение +3В. Разница в том, 5-3=+2В. Поскольку разница положительная, мы получаем положительный выброс напряжения на выходе компаратора.

Другой пример: если положительная клемма напряжения +3В, а на отрицательной входной клемме будет напряжение +5В. Разница +3-+5=-2В, так как разница входного напряжения отрицательна. Выход компаратора будет отрицательным пиком напряжения.

Если для примера рассмотрим положительный входной терминал качестве входных и отрицательного входного разъема в качестве эталона, как показано на рисунке выше. Так что разница напряжения между входным и другим крупным положительным получим положительный выход компаратора. Если разница отрицательная, то мы получим отрицательный или землей на выход компаратора.

SR мультивибратор: эта ячейка памяти может хранить один бит данных. На рисунке мы видим таблицу истинности.

Существует четыре состояния мульвибратора для двух входов; однако мы должны понимать, что только два состояния триггера для этого случая.

S R Q Q’ (Q штрих)
0 1 0 1
1 0 1 0

Теперь как показано в таблице, для входов сброса и установки мы получаем соответствующие результаты. Если есть импульс на набор PIN-кода и низкий уровень у сброса, то триггер сохраняет значение одного и влияет на высокую логику в Q терминалов. Это состояние продолжается до сброса, PIN получает импульс во время набора и имеет низкую логику. Это приведет к сбросу триггера поэтому выход Q выключается и это состояние продолжается до тех пор, пока триггер устанавливается снова.

Таким образом триггер хранит один бит данных. Вот другое дело, Q и Q-штрих всегда напротив.

В таймере, компаратор и триггер объединены.

Рассмотрим 9В подается на Таймер, из-за делителя напряжения, образованного резисторами внутри таймера, как показано в блок-схеме; там будет напряжение на контактах компаратора. Так из-за делителя напряжения сети у нас будет +6В на отрицательной клемме первого компаратора. И +3В на плюсовую клемму второго компаратора.

Первый и другой контакт -это один выход компаратора подключен к сбросу контакта мультивибратора, поэтому если у компаратора, один выход переходит из низкий, то триггер будет сброшен. А с другой стороны второй выход компаратора соединен с мультивибратором, так что если второй выход компаратора переходит из низкого значения мультивибратор хранит по одному.

На напряжение не менее +3В на контакт триггера (отрицательный вход второго компаратора), выход компаратора переходит из низкого в высокий, как обсуждалось ранее. Этот импульс определяет мультивибратор и сохраняет одно значение.

Теперь, если мы применяем напряжение выше чем +6В на контакте порога (плюсовой вход одного компаратора) , выход компаратора переходит от низкого к высоким. Этот импульс сбрасывает RS и RS запоминает ноль.

Другое дело происходит во время сброса триггера, когда он сбрасывает разряда получается контакт подключен к земле под именем получает включен Q1 . Транзистор T1 включается, поскольку элементы Q штрих находится на высокой отметке сброса и подключен к базе T1.

В нестабильной конфигурации подключенная емкость сюда сбрасывает в этот момент и поэтому на выходе таймера будет низким в течение этого времени. В нестабильной конфигурации время в течении заряда конденсатора на контакт триггера напряжение будет меньше, чем +3V и поэтому триггер сохраняет одно значение и на выходе будет высоким.

В нестабильной конфигурации, как показано на рисунке,

Частота выходного сигнала зависит от RA, RB резисторов и конденсатора C. уравнения дается в виде,

Частота(F) = 1/(период времени) = 1.44/((RA+RB*2)*C).

Здесь RA, RB являются значения сопротивлений и C значение емкости. Поставив сопротивление и емкость значения в вышеприведенное уравнение, мы получим частоты выходной квадратной волны.

Высокий уровень логики времени установленно как, TH= 0.693*(RA+RB)*C

Низкий уровень логики времени установленно как, TL= 0.693*RB*C

Скважностью импульсов выходного прямоугольного сигнала заданной как, Скважность= (RA+RB)/(RA+2*RB).

555 Таймер схема и описания

Контакт 1. Земля: этот вывод должен быть подключен к земле.

Контакт 8. Мощности или напряжения питания vcc: этот вывод также не имеет никакой специальной функции. Он подключен к положительному напряжению. На Таймере, чтобы функция сработала, этот вывод должен быть подключен к положительному напряжению в диапазоне +3,6 в до +15в.

Контакт 4. Сброс: как обсуждалось ранее, есть переключатель макросхемы. Выход триггера управляет микросхемой, выход подключен на контакт 3 напрямую.

«Сброс» вывод непосредственно подключен к MR (общий сброс) триггера. При исследовании мы можем наблюдать небольшой цикл на триггере. Когда SR (общий сброс) контакт активным является низкий уровень триггера. Это означает, что для триггера, чтобы сбросить контакт SR напряжение должно идти от высокого к низкому. Этот шаг вниз логики в триггере происходит с трудом уход к низкому уровню. Поэтому выход идет слабо, независимо от каких-либо выводов.

Этот контакт связан с vcc для триггера, чтобы остановить с жесткого сброса.

Контакт 3. Выход: этот вывод также не имеет никакой специальной функции. Этот контакт имеет конфигурацию тяни-толкай (PUSH-PULL), образованной транзисторами.

Данная конфигурация показана на рисунке. Базы двух транзисторов соединены с выходом триггера. Поэтому, когда высокий логический уровень появляется на выходе триггера, то транзистор NPN включается и появляется на выходе +V1. Когда логика появившийся на выходе триггера становится низким, транзистор PNP получает включение и выход подключается к земле или –V1 появляется на выходе.

Таким образом, как конфигурация используется, чтобы получить прямоугольный сигнал на выходе по логике управления с триггера. Основное назначение этой конфигурации — получить загрузку триггера обратно. Но триггер не может выпустить 100мА на выходе.

Ну до сих пор мы обсуждали контакты, которые не изменяют состояние выходов в любом состоянии. Оставшиеся четыре контакта специальные, потому что они определяют состояние выхода таймера микросхемы.

Контакт 5. Контрольной контакт: управляющий вывод соединен с отрицательным входным контактом первого компаратора.

Рассмотрим для случая напряжение между vcc и Землей составляет 9В. Из-за делителя напряжения в микросхеме, напряжение на управляющий вывод будет только vcc*2/3 (для напряжения питания vcc = 9, напряжение на контакте = 9*2/3=6В).

Эта функция дает пользователю непосредственно контроль за первым компаратором. Как показано в вышеуказанной схемы на выход первого компаратора подается на сброс триггера. На этот вывод мы можем поставить различные напряжения, скажем, если мы подключаем его к +8В. Сейчас происходит то, что порог контактного напряжение должно достигать +8В до сброса триггера и тащить на выход вниз.

Для нормальной случая, к V-Out будет идти минимальное то конденсатор получает заряд до 2/3VCC (+6V для 9В питания). Теперь, поскольку мы выставили разные напряжения на управляющий вывод (первый компаратор отрицательный или компаратор сброса).

Конденсатор следует зарядить до достижения напряжения управляющего вывода. Сила заряда конденсатора влияет на время включения и выключения изменения сигнала. Поэтому выходной сигнал испытывает различные включения интервала.

Обычно этот вывод заведен вниз с конденсатором. Во избежание нежелательных шумов и помех в работе.

Контакт 2. Триггер: подключен ко входу второго компаратора. Выход второго компаратора подключен к контакту SET триггера. С выхода второго компаратора мы получаем высокое напряжение на выходе таймера. Так что можно сказать контакт триггера управляет выходом Таймера.

Сейчас вот что стоит соблюдать, низкое напряжение в триггере форсирует выход высокого напряжения, так как на инвертирующий вход второго компаратора. Напряжение на контакт триггера должен идти ниже напряжения питания VCC*1/3 (при VCC 9В как предполагается, VCC*(1/3)=9*(1/3)=3В). Поэтому напряжение на триггере должен быть ниже 3В (для 9В питания) на выходе таймера, чтобы идти высоким уровнем.

Если этот контакт подключен к земле, выход будет всегда высокий.

Контакт 6. Порог: контакт порога напряжения определяет момент сброса триггера в Таймере. Порог напряжения обозначен для положительного ввода компаратора 1.

Здесь разность напряжений между контактом THRESOLD (порога) и контакта управления (Control) определяет выход компаратор 2 и поэтому сброс логики. Если напряжение разностm будет положительной, то триггер получает обнуление и выход снижается. Если разница отрицательная, то логика в контакте SET определяет выход.

Если вход контроль открыт. Затем напряжение, равное или большее, чем напряжение VCC*(2/3) (т.е. 6V для 9В питания) приведет к сбросу триггера. Поэтому выход идет низким.

Поэтому мы можем заключить, что контакт порога напряжения определяет, когда выход должен идти низкий, если управляющий вывод открыт.

Контакт 7. Сброс: этот вывод взят из открытого коллектора транзистора. Поскольку транзистор (контакт сброса T1) получил соединение Базы к Q штрих. Всякий раз, когда выход становится низким или триггер получает обнуление, Сброс подключен на землю. Когда Q штрих будет высокой, тогда Q будет низким, поэтому транзистор T1 получит изменение ON так как на базу транзистора поступила энергия.

Этот вывод обычно разряжает конденсатор в нестабильной конфигурации, по этому название Сброс.

Таймеры — NA555 , NE555 , SA555 , SE555

1 Особенности

  • Диапазон времени от микросекунд до часов
  • Астабильный или моностабильный режимы
  • Регулируемый коэффициент заполнения
  • ТТЛ —совместимый выход может быть использован как сток или исток (до 200 мА)
  • Изделие соответствует стандарту MIL-PRF-38535

2 Применение

  • Биометрия отпечатков пальцев
  • Биометрия сетчатки глаза
  • RFID — считыватели

3 Описание

Эти устройства предназначены для работы в прецизионных времязадающих цепях и могут производить точные временные задержки или колебания. В режиме временной задержки или в моностабильном режиме временной интервал задается одним внешним резистором или конденсатором.

Пороговый уровень и уровень переключения располагаются в двух третях и одной трети от напряжения питания соответственно. Эти уровни могут быть изменены, путем изменения напряжения на выводе управления. Когда на вход trigger подается сигнал низкого уровня, таймер срабатывает и подает на вывод output высокий уровень напряжения. Если уровни сигналов на выводах trigger и threshold выше порогового уровня то триггер срабатывает и устанавливает низкий уровень напряжения на выводе output . Вывод reset (сброс) может переопределить значения напряжения на всех других выводах, чтобы запустить новый цикл синхронизации. Когда на вывод reset подается низкий уровень напряжения, триггер сбрасывается и устанавливает на выводе output тоже низкий уровень напряжения. Когда на выходе устанавливается низкий уровень, вывод discharge (разряд) замыкается через низкоомный канал на землю.

Выходная цепь способна поддерживать ток до 200 мА. Может работать с напряжением питания от 5 В до 15 В. При напряжении питания 5 В уровни напряжения на выходах совместимы с ТТЛ-входами.

Размеры для разных типов корпусов
Серийный номер Корпус Размеры
xx555 PDIP (8) 9.81 мм × 6.35 мм
SOP (8) 6.20 мм× 5.30 мм
TSSOP (8) 3.00 мм× 4.40 мм
SOIC (8) 4.90 мм× 3.91 мм

6 Расположение и назначение выводов

NA555…D или P корпус
NE555…D, P, PS, или PW корпус
SA555…D или P корпус
SE555…D, JG, или P корпус (Вид сверху) SE555…FK корпус (NC — не задействованные выводы)
ВЫВОД I/O Описание
Название D, P, PS, PW, JG FK
NO.
CONT 5 12 I/O Управляет пороговым напряжением компаратора, позволяет отказаться от подключения конденсатора.
DISCH 7 17 O При открытом транзисторе через него происходит разряд времязадающего конденсатора.
GND 1 2 Земля
NC 1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19 Внутренне не подключенные выводы
OUT 3 7 O Выход таймера для подключения нагрузки
RESET 4 10 I При подаче напряжения низкого уровня на этот вывод таймер сбрасывается и на выводах OUT и DISCH
THRES 6 15 I Остановка работы таймера. Когда напряжение на THRES > CONT на выводах OUT и DISCH устанавливается низкий уровень напряжения
TRIG 2 5 I Запуск таймера. При подаче напряжения на TRIG < ½ CONT на выводах OUT и DISCH устанавливается высокий уровень напряжения
V CC 8 20 Напряжение питания, от 4.5 В до 16 В. (SE555 максимум 18 В)

7 Характеристики

7.1 Абсолютные максимальные значения

Мин. Макс. Ед. изм.
V CC Напряжение питания 18 В
V I Входное напряжение CONT, RESET, THRES, TRIG V CC В
I O Выходной ток ±225 мA
θ JA D корпус 97 °C/Вт
P корпус 85
PS корпус 95
PW корпус 149
θ JC Тепловое сопротивление для корпусов FK корпус 5.61 °C/Вт
JG корпус 14.5
T J Рабочая температура 150 °C
Температура корпуса в течении 60 с. FK корпус 260 °C
Температура пайки для корпуса в течении 60 с. JG корпус 300 °C

(1) Абсолютные максимальные значения указывают пределы, превышение которых, может привести к повреждению устройства. Электрические характеристики не применяются при работе с устройством за пределами своих заявленных условий эксплуатации. Воздействие абсолютных максимальных значений на устройство в течении длительного времени, может повлиять на его надежность.

(2) Все напряжения указаны по отношению к земле.

(3) Максимальная рассеиваемая мощность является функцией от T J (max), θ JA , и T A . при любой допустимой равна P D = (T J (max) — T A) / θ JA

(4) Тепловое сопротивление для корпуса рассчитывается по стандарту JESD 51-7.

(5) Максимальная рассеиваемая мощность является функцией от T J (max), θ JC , и T C . Максимально допустимая рассеиваемая мощность при любой допустимой температуре окружающего воздуха равна P D = (T J (max) — T С) / θ JС . Работа на абсолютном максимуме T J от 150°C может повлиять на надежность.

(6) Тепловое сопротивление для корпуса рассчитывается по стандарту MIL-STD-883.

7.2 Температура хранения

В рабочем диапазоне температур на открытом воздухе (если не указано иное)

MIN MAX Ед. изм.
V CC Напряжение питания NA555, NE555, SA555 4.5 16 В
SE555 4.5 18
V I Входное напряжение CONT, RESET, THRES, and TRIG V CC В
I O Выходной ток ±200 мA
T A Рабочая температура на открытом воздухе NA555 –40 105 °C
NE555 0 70
SA555 –40 85
SE555 –55 125

7.4 Электрические характеристики

Параметр Условия испытаний SE555 NA555
NE555
SA555
Ед. изм.
MIN TYP MAX MIN TYP MAX
Уровень напряжения на выводе THRES V CC = 15 В 9.4 10 10.6 8.8 10 11.2 В
V CC = 5 В 2.7 3.3 4 2.4 3.3 4.2
Ток через вывод THRES 30 250 30 250 нA
Уровень напряжения на выводеTRIG V CC = 15 В 4.8 5 5.2 4.5 5 5.6 В
T A = от –55°C до 125°C 3 6
V CC = 5 В 1.45 1.67 1.9 1.1 1.67 2.2
T A = от –55°C до 125°C 1.9
Ток через вывод TRIG при 0 В на TRIG 0.5 0.9 0.5 2 мкA
Уровень напряжения на выводе RESET 0.3 0.7 1 0.3 0.7 1 В
T A = от –55°C до 125°C 1.1
Ток через вывод RESET при V CC на RESET 0.1 0.4 0.1 0.4 мA
при 0 В на RESET –0.4 –1 –0.4 –1.5
Переключающий ток на DISCH в закрытом состоянии 20 100 20 100 нA
Переключающее напряжение на DISCH в открытом состоянии V CC = 5 В, I O = 8 мA 0.15 0.4 В
Напряжение на CONT V CC = 15 В 9.6 10 10.4 9 10 11 В
T A = от –55°C до 125°C 9.6 10.4
V CC = 5 В 2.9 3.3 3.8 2.6 3.3 4
T A = от –55°C до 125°C 2.9 3.8
Низкий уровень напряжения на выходе V CC = 15 В, I OL = 10 мA 0.1 0.15 0.1 0.25 В
T A = от –55°C до 125°C 0.2
V CC = 15 В, I OL = 50 мА 0.4 0.5 0.4 0.75
T A = от –55°C до 125°C 1
V CC = 15 В, I OL = 100 мА 2 2.2 2 2.5
T A = от –55°C до 125°C 2.7
V CC = 15 В, I OL = 200 мA 2.5 2.5
V CC = 5 В, I OL = 3.5 мA T A = от –55°C до 125°C 0.35
V CC = 5 В, I OL = 5 мA 0.1 0.2 0.1 0.35
T A = от –55°C до 125°C 0.8
V CC = 5 В, I OL = 8 мA 0.15 0.25 0.15 0.4
Высокий уровень напряжения на выходе V CC = 15 В, I OH = –100 мA 13 13.3 12.75 13.3 В
T A = от –55°C до 125°C 12
V CC = 15 В, I OH = –200 мA 12.5 12.5
V CC = 5 В, I OH = –100 мA 3 3.3 2.75 3.3
T A = от –55°C до 125°C 2
Потребляемый ток V CC = 15 В 10 12 10 15 мA
V CC = 5 В 3 5 3 6
Низкий уровень на выходе, без нагрузки V CC = 15 В 9 10 9 13
V CC = 5 В 2 4 2 5

(1) Этот параметр влияет на максимальные значения времязадающих резисторов R A и R B в цепи Рис. 12. Для примера, когда V CC = 5 V R = R A + R B ≉ 3.4 МОм, и для V CC = 15 В максимальное значение равно 10 мОм.

7.5 Эксплуатационные характеристики

V CC = от 5 В до 15 В, T A = 25°C (если не указано иное)

Параметр Условия испытаний SE555 NA555
NE555
SA555
Ед. изм.
Мин. Тип. Макс. Мин. Тип. Макс.
Начальная погрешность интервалов времени T A = 25°C 0.5 1.5 1 3 %
Каждый таймер, астабильный 1.5 2.25
Температурный коэффициент временного интервала Каждый таймер, моностабильный T A = MIN to MAX 30 100 50 ppm/
°C
Каждый таймер, астабильный 90 150
Изменение временного интервала от напряжения питания Каждый таймер, моностабильный T A = 25°C 0.05 0.2 0.1 0.5 %/V
Каждый таймер, астабильный 0.15 0.3
Время нарастания выходного импульса C L = 15 пФ,
T A = 25°C
100 200 100 300 нс
Время спада выходного импульса C L = 15 пФ,
T A = 25°C
100 200 100 300 нс

(1) Соответствуют стандарту MIL-PRF-38535, эти параметры не проходили производственные испытания.

(2) Для условий указанных как Мин. и Макс. , используют соответствующее значение, указанное в рекомендуемых условиях эксплуатации.

(3) Погрешность интервала времени определяется как разность между измеренным значением и средним значением случайной выборки из каждого процесса .

(4) Значения указаны для моностабильной схемы, показанной на рис. 9, со следующими значениями компонентов R A = 2 от кОм до 100 кОм, C = 0.1 мкФ.

(5) Значения указаны для астабильной схемы, показанной на рис. 9, со следующими значениями компонентов R A = 1 от кОм до 100 кОм, C = 0.1 мкФ.

7.6 Типовые характеристики

Данные для температур ниже -40 ° C и выше 105 ° C применимы только для SE555

Рис.1 Выходное напряжение низкого уровня от выходного тока низкого уровня для напряжения питания 5 В.

Рис.2 Выходное напряжение низкого уровня от выходного тока низкого уровня для напряжения питания 10 В. Рис. 8 Время задержки распространения сигнала от запускающего импульса низкого уровня.

8 Подробное описание

8.1 Обзор

Таймеры серии xx555 популярны и просты в использовании и зачастую применяются для синхронизации временных интервалов от 1 мкс до часов или частот от <1 мГц до 100 кГц. В режиме временной задержки или моностабильном режиме заданный интервал регулируется одним внешним компонентом (резистором и конденсатором). В астабильном режиме работы частоту и коэффициент заполнения можно изменять независимо друг от друга двумя внешними резисторами и конденсатором.

8.2 Функциональная блок-схема

  1. RESET может быть заменен TRIG, который можно заменить THRES.

8.3 Описание характеристик

8.3.1 Моностабильный режим работы

Для работы в моностабильном режиме любой из таймеров этой серии может быть подключен как показано на Рис. 9.

Рис. 9 Схема включения для моностабильного режима работа.

Рис. 10 Осциллограмма напряжений для моностабильного режима работы.

Рис 11 Длительность выходного импульса от емкости конденсатара

8.3.2 Астабильный режим работы

Рис. 12 Схема включения для астабильного режима работы. Рис. 13 Осциллограмма напряжений для астабильного режима работы.

9. Применение

9.1 Информация для применения

В таймерах серии xx555 используются резистор и конденсатор для формирования времени задержки или рабочей частоты. В данном разделе представлена упрощенная информация для разработки схем.

9.2 Типичные схемы применения

9.2.1 Индикатор пропуска импульсов

Рис. 16 Схема индикатора пропуска импульсов

9.2.2 Требования к проектированию

Входная ошибка (отсутствие импульса) должна быть большой. Небольшой входной сигнал не будет обнаружен, так как времязадающий конденсатор «C» будет разряжен.

9.2.1.1 Подробное описание проектирования

Следует подобрать величину R A и C таким образом, чтобы R A × C>[максимальной длительности входного импульса]. R L улучшает V OH , но не является обязательным для совместимости с ТТЛ-логикой.

9.2.1.2 Диаграмма напряжений

Рис. 17 Осциллограмма выполнения синхронизации для индикатора пропуска импульсов

9.2.2 ШИМ регулятор на 555

Работа таймера может регулироваться, с помощью изменения внутреннего порога срабатывания и переключения, которое осуществляется подачей внешнего напряжения или тока на вывод CONT. На показана схема для широтно-импульсной модуляции. Непрерывная последовательность входных импульсов запускает моностабильный мультивибратор, а управляющий сигнал модулирует пороговое напряжение. На показана, полученная на выходе широтно-импульсная модуляция. В то врем как синусоидальный модулирующий сигнал может быть любой формы.


Рис. 18 Схема ШИМ-регулятора на 555

Номера выводов показаны для корпусов D, JG, P, PS, и PW.

  1. Модулирующий сигнал может быть подключен напрямую или через емкость к выводу CONT. Для подключения напрямую воздействие напряжения и сопротивления источника модуляции на отклонение таймера, должно учитываться.

9.2.2.1 Требования к проектированию

На вход синхронизации должны подаваться V OL и V OH больше и меньше 1/3 напряжения питания. Напряжение на входе модулирующего сигнала должно изменяться относительно земли. Подключаемая нагрузка должна быть терпима к нелинейности передаточной функции; связь между модуляцией и шириной импульса не является линейной, поскольку заряд конденсатора в RC-цепочке идет по отрицательной экспоненциальной кривой.

9.2.2.2 Подробное описание проектирования

Следует подобрать R A и C таким образом, чтобы R A × C = 1/4 [периода синхронизации]. R L улучшает V OH , но не является обязательным для совместимости с ТТЛ-логикой.

9.2.2.3 Диаграмма напряжений

Рис. 19 Осциллограмма ШИМ-модуляции.

9.2.3 Фазово-импульсная модуляция

На показана схема включения 555 для работы в качестве фазово-импульсного регулятора. В этой схеме регулируется пороговое напряжение и, тем самым, время задержки, связанное с несинхронизируемым генератором.На показан сигнал треугольной формы для этой цепи; однако сигнал может быть любой формы.


Рис. 20 Схема включения для фазово-импульсной модуляции

9.2.3.1 Требования к проектированию

Постоянный и переменный ток на входе модулирующего сигнала, будут изменять верхние и нижние пороговые значения напряжения времязадающего конденсатора. Частота и коэффициент заполнения будут измениться в зависимости от модулирующего сигнала.

9.2.3.2 Подробное описание проектирования

Номинальная выходная частота и коэффициент заполнения можно вычислить по формуле для астабильного мультивибратора. R L улучшает V OH , но не является обязательным для совместимости с ТТЛ-логикой.

9.2.3.3 Диаграмма напряжений

Рис. 21 Осциллограмма напряжений для фазово-импульсной модуляции

9.2.4 Последовательный таймер

Многие устройства, например такие как компьютеры требуют сигналы для инициализации условий во время запуска. Другие, такие как испытательное оборудование требуют активирующих тестовых сигналов в последовательности импульсов. Данная схема может быть подключена, чтобы обеспечить такое последовательное управление. Таймеры могут использоваться в различных комбинациях, как с астабильной так и моностабильной схемой подключения, с модуляцией и без для исключительно гибкого управления формой сигнала. На показана последовательная схема с возможность применения во многих системах, а на показана диаграмма напряжений на выходе.


Рис. 22 Последовательный таймер на 555

9.2.4.1 Требования к проектированию

Последовательный таймер представляет собой цепочку из нескольких, соединенных между собой, таймеров, подключенных по моностабильной схеме. Подключенные компоненты — резисторы 33 кОм и конденсаторы 0.001 мкФ.

9.2.4.2 Подробное описание проектирования

Величину времязадающих конденсаторов и резисторов можно рассчитать по формуле: t w = 1.1 × R × C.

9.2.4.3 Диаграмма напряжений


Рис. 23 Осциллограммы напряжений на выходах

В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...