Стадии взаимодействия вируса с клеткой хозяина. Типы взаимодействия вируса с клеткой

Оглавление темы "Типы микроорганизмов. Вирусы. Вирион.":
1. Микроорганизмы. Типы микроорганизмов. Классификация микроорганизмов. Прионы.
2. Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов.
3. Капсид вируса. Функции капсида вирусов. Капсомеры. Нуклеокапсид вирусов. Спиральная симметрия нуклеокапсида. Кубическая симметрия капсида.
4. Суперкапсид вируса. Одетые вирусы. Голые вирусы. Матричные белки (М-белки) вирусов. Репродукция вирусов.

6. Типы инфицирования клеток вирусами. Репродуктивный цикл вирусов. Основные этапы репродукции вирусов. Адсорбция вириона к клетке.
7. Проникновение вируса в клетку. Виропексис. Раздевание вируса. Теневая фаза (фаза эклипса) репродукции вирусов. Образование вирусных частиц.
8. Транскрипция вируса в клетке. Трансляция вирусов.
9. Репликация вируса в клетке. Сборка вирусов. Высвобождение дочерних вирионов из клетки.

Известны следующие типы взаимодействий «вирус-клетка »: продуктивный (образуется дочерняя популяция), интегративный (вирогения ), абортивный (дочерняя популяция не образуется) и интерференция вирусов (инфицирование чувствительной клетки разными вирусами).

Продуктивное взаимодействие «вирус-клетка» чаще носит литический характер, то есть заканчивается гибелью и лизисом инфицированной клетки, что происходит после полной сборки дочерней популяции. Гибель клетки вызывают следующие факторы: раннее подавление синтеза клеточных белков, накопление токсических и повреждающих клетку вирусных компонентов, повреждение лизосом и высвобождение их ферментов в цитоплазму.

Интегративное взаимодействие , или вирогения , не приводит к гибели клетки. Нуклеиновая кислота вируса встраивается в геном клетки-хозяина и в последующем функционирует как его составная часть. Наиболее яркие примеры подобного взаимодействия - лизогения бактерий и вирусная трансформация клеток.

Абортивное взаимодействие не приводит к появлению дочерней популяции и происходит при взаимодействии вируса с покоящейся клеткой (стадия клеточного цикла G0) либо при инфицировании клетки вирусом с изменёнными (дефектными) свойствами. Следует различать дефектные вирусы и дефектные вирионы. Первые существуют как самостоятельные виды и функционально неполноценны, так как для их репликации необходим «вирус-помощник» (например, для репликации аденоассоциированного вируса необходимо присутствие аденовирусов). Вторые составляют дефектную группу, формирующуюся при образовании больших дочерних популяций (например, могут образовываться пустые капсиды либо безоболочечные нуклео-капсиды). Особая форма дефектных вирионов - псевдовирионы, включившие в капсид нуклеиновую кислоту клетки-хозяина.


Интерференция вирусов происходит при инфицировании клетки двумя вирусами. Различают гомологичную (при инфицировании клетки родственными вирусами) и гетерологичную (если интерферируют неродственные виды) интерференцию. Это явление возникает не при всякой комбинации возбудителей, иногда два разных вируса могут репродуцироваться одновременно (например, вирусы кори и полиомиелита). Интерференция реализуется либо за счёт индукции одним вирусом клеточных ингибиторов (например, ИФН), подавляющих репродукцию другого, либо за счёт повреждения рецепторного аппарата или метаболизма клетки первым вирусом, что исключает возможность репродукции второго.


Типы взаимодействия вируса с клеткой. Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.
Продуктивный тип - завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).
Абортивный тип - не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.
Интегративный тип, или вирогения - характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).
Репродукция вирусов осуществляется в несколько стадий , последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку;«раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.
Адсорбция. Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс . Вирус адсорбируется на определенных участках клеточной мембраны - так называемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 10 4 до 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.
Проникновение в клетку. Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.
«Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов , в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.
Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.
Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации.
Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей.
Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:
1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм ;
2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);
3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;
4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).
Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки. Первый тип - взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.
Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в

В отличие от про- и эукариотических микроорганизмов вирусы не размножаются бинарным делением. В 50-х годах было установлено, что вирусы размножаются путем репродукции, т.е.воспроизведения их нуклеиновых кислот и синтеза белков «клеткой-хозяином»с последующей сборкой вирионов. Эти процессы происходят в разных частях клетки-хозяина, например в ядре и цитоплазме. Такой разобщенный способ репродукции получил название дизъюнктивного.

Вирусная репродукция, хотя и осуществляется согласно триаде ДНК РНК белок, представляет собой уникальную форму выражения чужеродной (вирусной) информации в клетках человека, животных, насекомых, растений, бактерий. Эта уникальность состоит прежде всего в подчинении клеточных матрично-генетических механизмов вирусной информации.

Поскольку вирусы не имеют собственного метаболизма, они не нуждаются в ферментах, необходимых для многочисленных катаболических и анаболических реакций. Однако у вирусов обнаружено свыше 10 ферментов, разных по своему происхождению и функциональному назначению.

По происхождению вирусные ферменты делятся на три группы:

1. вирионные - входят в состав вирионов;

2. вирусиндуцированные - ферменты, структура которых закодирована в геноме вируса, а синтез происходит на рибосомах клетки-хозяина;

3. клеточные , модифицированные вирусом - это ферменты клетки-хозяина, которые не являются вирусспецифическими и которые участвуют в репродукции вируса.

По функциональному значению вирусные ферменты можно подразделить на 2 группы:

1) ферменты, участвующие в процессе репликации и транскрипции вирусной нуклеиновой кислоты;

2) ферменты, способствующие проникновению вирусной НК в клетку-хозяина и выходу образовавшихся вирионов.

Известны три типа взаимодействия вируса с клеткой:

1) продуктивный ти п, завершающийся образованием вирусного потомства;

2) абортивный тип , не завершающийся образованием новых вирусных частиц, поскольку инфекционный процесс прерывается на одном из этапов;

3) интегративный тип(или вирогения), характеризующийся встраиванием вирусной ДНК в хромосому клетки-хозяина.

ПРОДУКТИВНЫЙ ТИП взаимодействия (репродукция вирусов) осуществляется в несколько стадий, последовательно сменяющих друг друга:

1. Адсорбция вируса на клетке , т.е. прикрепление вирусов к поверхности клетки. Вирус адсорбируется на клеточных рецепторах разной химической природы (белки, углеводные компоненты белков и липидов, липиды), число которых на поверхности одной клетки колеблется между 10 4 и 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц. Поверхностные структуры вируса, узнающие специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками. Обычно эту функцию выполняет один из поверхностных белков капсида или суперкапсида. Соответствие (комплементарность) клеточных рецепторов вирусным прикрепительным белкам определяет возможность возникновения инфекционного процесса в клетке; от этого зависят спектр клеток, поражаемых вирусом, или его тропизм, и в ряде случаев, чувствительность организма к данному вирусу.

2. Проникновение вируса в клетку: существует два способа проникновения вирусов животных в клетку: виропексис и слияниевирусной оболочки с клеточной мембраной.

При виропексисе, после адсорбции вирусов, происходит инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки.

Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочек.

По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

3. «Раздевание» вируса: процесс заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, а конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота.

4. Биосинтез компонентов вируса; проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генети-ческой информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.

Синтез компонентов вируса (белков и нуклеиновых кислот) разобщен во времени и пространстве, т.е. протекает в разных структурах ядра и цитоплазмы клетки. Вот почему этот уникальный способ размножения вирусов называется дизъюнктивным (разобщенным).

5. Формирование (сборка) вирионов: синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически узнавать друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодейст-вуют белки суперкапсидных оболочек (например, вирусы гриппа). Формирование вирусов происходит на ядерных или цитоплазматических мембранах клетки.

6. Выход вирусов из клетки: различают 2 основных типа выхода вирусного потомства из клетки:

а) взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой тип выхода характерен для вирусов, не имеющих суперкапсида.

б) почкование - он присущ вирусам, имеющим суперкапсид. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 часов (вирусы гриппа, натуральной оспы) до нескольких суток (вирусы кори, аденовирусы). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

ИНТЕГРАТИВНЫЙ ТИП ВЗАИМОДЕЙСТВИЯ (ВИРОГЕНИЯ) характеризуется встраиванием (интеграцией) нуклеиновой кислоты вируса в хромосому клетки. При этом вирусный геном реплицируется и функционирует как составная часть клеточного генома.

Интеграция вирусного генетического материала с ДНК клетки характерна для определенных групп вирусов: бактериофагов, онкогенных (опухолеродных) вирусов, вируса гепатита В, вирус герпеса, ВИЧ.

Для интеграции с хромосомой клетки необходима кольцевая форма двунитчатой вирусной ДНК. У ДНК-содержащих вирусов (вирус гепатита В) их ДНК обладает свойством встраиваться в геном клетки при участии ряда ферментов. У некоторых РНК-содержащих вирусов (ВИЧ, онкогенные вирусы) сначала на матрице РНК с помощью вирусспецифического фермента синтезируется ДНК-копия, которая затем встраивается в ДНК клетки. ДНК вируса, находящаяся в составе хромосомы клетки, называется ДНК-провирусом.

При делении клетки, сохраняющей свои нормальные функции, ДНК-провирус переходит в геном дочерних клеток, т.е. состояние вирогении наследуется. ДНК-провирус несет дополнительную генетическую информацию, в результате чего клетка приобретает ряд новых свойств. Так, интеграция может явиться причиной возникновения ряда аутоиммунных и хронических заболеваний, разнообразных опухолей. Под воздействием ряда физических и химических факторов ДНК-провирус может вырезаться из клеточной хромосомы и переходить в автономное состояние, включаясь в обычный цикл репродукции.


Открытие вирусов Д. И. Ивановским в 1892г. положило начало развитию науки вирусологии. Более быстрому ее развитию способствовали: изобретение электронного микроскопа, разработка метода культивирования микроорганизмов в культурах клеток.

В настоящее время вирусология - бурно развивающаяся наука, что связано с рядом причин:

Ведущей ролью вирусов в инфекционной патологии человека (примеры - вирус гриппа, ВИЧ -вирус иммунодефицита человека, цитомегаловирус и другие герпесвирусы) на фоне практически полного отсутствия средств специфической химиотерапии;

Использованием вирусов для решения многих фундаментальных вопросов биологии и генетики.

Основные свойства вирусов (и плазмид) , по которым они отличаются от остального живого мира.

1. Ультрамикроскопические размеры (измеряются в нанометрах). Крупные вирусы (вирус оспы) могут достигать размеров 300 нм, мелкие - от 20 до 40 нм. 1мм=1000мкм, 1мкм=1000нм.

3. Вирусы не способны к росту и бинарному делению.

4. Вирусы размножаются путем воспроизводства себя в инфицированной клетке хозяина за счет собственной геномной нуклеиновой кислоты.

6. Средой обитания вирусов являются живые клетки - бактерии (это вирусы бактерий или бактериофаги), клетки растений, животных и человека.

Все вирусы существуют в двух качественно разных формах: внеклеточной - вирион и внутриклеточной - вирус. Таксономия этих представителей микромира основана на характеристике вирионов - конечной фазы развития вирусов.

Строение (морфология) вирусов

1. Геном вирусов образуют нуклеиновые кислоты, представленные одноцепочечными молекулами РНК (у большинства РНК -вирусов) или двухцепочечными молекулами ДНК (у большинства ДНК -вирусов).

2. Капсид - белковая оболочка, в которую упакована геномная нуклеиновая кислота. Капсид состоит из идентичных белковых субъединиц - капсомеров. Существуют два способа упаковки капсомеров в капсид - спиральный (спиральные вирусы) и кубический (сферические вирусы).

При спиральной симметрии белковые субъединицы располагаются по спирали, а между ними, также по спирали, уложена геномная нуклеиновая кислота (нитевидные вирусы). При кубическом типе симметрии вирионы могут быть в виде многогранников, чаще всего - двадцатигранники - икосаэдры.

3. Просто устроенные вирусы имеют только нуклеокапсид , т. е. комплекс генома с капсидом и называются “голыми”.

4. У других вирусов поверх капсида есть дополнительная мембраноподобная оболочка, приобретаемая вирусом в момент выхода из клетки хозяина - суперкапсид. Такие вирусы называют “одетыми”.

Кроме вирусов, имеются еще более просто устроенные формы способных передаваться агентов - плазмиды, вироиды и прионы.

Основные этапы взаимодействия вируса с клеткой хозяина

1. Адсорбция - пусковой механизм, связанный со взаимодействием специфических рецепторов вируса и хозяина (у вируса гриппа - гемагглютинин, у вируса иммунодефицита человека - гликопротеин gp 120).

2. Проникновение - путем слияния суперкапсида с мембраной клетки или путем эндоцитоза (пиноцитоза).

3. Освобождение нуклеиновых кислот - “раздевание” нуклеокапсида и активация нуклеиновой кислоты.

4. Синтез нуклеиновых кислот и вирусных белков, т. е. подчинение систем клетки хозяина и их работа на воспроизводство вируса.

5. Сборка вирионов - ассоциация реплицированных копий вирусной нуклеиновой кислоты с капсидным белком.

6. Выход вирусных частиц из клетки, приобретения суперкапсида оболочечными вирусами.

Исходы взаимодействия вирусов с клеткой хозяина

1. Абортивный процесс - когда клетки освобождаются от вируса:

При инфицировании дефектным вирусом, для репликации которого нужен вирус - помощник, самостоятельная репликация этих вирусов невозможна (так называемые вирусоиды). Например, вирус дельта (D) гепатита может реплицироваться только при наличии вируса гепатита B, его Hbs - антигена, аденоассоциированный вирус - в присутствии аденовируса);

При инфицировании вирусом генетически нечувствительных к нему клеток;

При заражении чувствительных клеток вирусом в неразрешающих условиях.

2. Продуктивный процесс - репликация (продукция) вирусов:

- гибель (лизис) клеток (цитопатический эффект) - результат интенсивного размножения и формирования большого количества вирусных частиц - характерный результат продуктивного процесса, вызванного вирусами с высокой цитопатогенностью. Цитопатический эффект действия на клеточные культуры для многих вирусов носит достаточно узнаваемый специфический характер;

- стабильное взаимодействие , не приводящее к гибели клетки (персистирующие и латентные инфекции) - так называемая вирусная трансформация клетки.

3. Интегративный процесс - интеграция вирусного генома с геномом клетки хозяина. Это особый вариант продуктивного процесса по типу стабильного взаимодействия. Вирус реплицируется вместе с геномом клетки хозяина и может длительно находиться в латентном состоянии. Встраиваться в ДНК - геном хозяина могут только ДНК - вирусы (принцип “ДНК - в ДНК”). Единственные РНК - вирусы, способные интегрироваться в геном клетки хозяина - ретровирусы, имеют для этого специальный механизм. Особенность их репродукции - синтез ДНК провируса на основе геномной РНК с помощью фермента обратной транскриптазы с последующим встраиванием ДНК в геном хозяина.

Основные методы культивирования вирусов

1. В организме лабораторных животных.

2. В куриных эмбрионах.

3. В клеточных культурах - основной метод.

Типы клеточных культур

1. Первичные (трипсинизированные) культуры - фибробласты эмбриона курицы (ФЭК), человека (ФЭЧ), клетки почки различных животных и т. д. Первичные культуры получают из клеток различных тканей чаще путем их размельчения и трипсинизации, используют однократно, т. е. постоянно необходимо иметь соответствующие органы или ткани.

2. Линии диплоидных клеток пригодны к повторному диспергированию и росту, как правило не более 20 пассажей (теряют исходные свойства).

3. Перевиваемые линии (гетероплоидные культуры), способны к многократному диспергированию и перевиванию, т. е. к многократным пассажам, наиболее удобны в вирусологической работе - например, линии опухолевых клеток Hela, Hep и др.

Специальные питательные среды для культур клеток

Используются разнообразные синтетические вирусологические питательные среды сложного состава, включающие большой набор различных факторов роста - среда 199, Игла, раствор Хэнкса, гидролизат лактальбумина. В среды добавляют стабилизаторы рН (Hepes), различные в видовом отношении сыворотки крови (наиболее эффективной считают эмбриональную телячью сыворотку), L -цистеин и L -глютамин.

В зависимости от функционального использования среды могут быть ростовые (с большим содержанием сыворотки крови) - их используют для выращивания клеточных культур до внесения вирусных проб, и поддерживающие (с меньшим содержанием сыворотки или ее отсутствием) - для содержания инфицированных вирусом клеточных культур.

Выявляемые проявления вирусной инфекции клеточных культур

1. Цитопатический эффект.

2. Выявление телец включений.

3. Выявление вирусов методом флюоресцирующих антител (МФА), электронной микроскопией, авторадиографией.

4. Цветная проба. Обычный цвет используемых культуральных сред, содержащих в качестве индикатора рН феноловый красный, при оптимальных для клеток условиях культивирования (рН около 7,2) - красный. Размножение клеток меняет рН и соответственно - цвет среды с красного на желтый за счет смещения рН в кислую сторону. При размножении в клеточных культурах вирусов происходит лизис клеток, изменения рН и цвета среды не происходит.

5. Выявление гемагглютинина вирусов - гемадсорбция, гемагглютинация.

6. Метод бляшек (бляшкообразования). В результате цитолитического действия многих вирусов на клеточные культуры образуются зоны массовой гибели клеток. Выявляют бляшки - вирусные “ клеточно - негативные” колонии.

Номенклатура вирусов.

Название семейства вирусов заканчивается на “viridae”, рода - “virus”, для вида обычно используют специальные названия, например - вирус краснухи, вирус иммунодефицита человека - ВИЧ, вирус парагриппа человека типа 1 и т. д.

Вирусы бактерий (бактериофаги)

Естественной средой обитания фагов является бактериальная клетка, поэтому фаги распространены повсеместно (например, в сточных водах). Фагам присущи биологические особенности, свойственные и другим вирусам.

Наиболее морфологически распространенный тип фагов характеризуется наличием головки - икосаэдра, отростка (хвоста) со спиральной симметрией (часто имеет полый стержень и сократительный чехол), шипов и отростков (нитей), т. е. внешне несколько напоминают сперматозоид.

Взаимодействие фагов с клеткой (бактерией) строго специфично, т. е. бактериофаги способны инфицировать только определенные виды и фаготипы бактерий.

Основные этапы взаимодействия фагов и бактерий

1. Адсорбция (взаимодействие специфических рецепторов).

2. Внедрение вирусной ДНК (инъекция фага) осуществляется за счет лизирования веществами типа лизоцима участка клеточной стенки, сокращения чехла, вталкивания стержня хвоста через цитоплазматическую мембрану в клетку, впрыскивание ДНК в цитоплазму.

3. Репродукция фага.

4. Выход дочерних популяций.

Основные свойства фагов

Различают вирулентные фаги , способные вызвать продуктивную форму процесса, и умеренные фаги , вызывающие редуктивную фаговую инфекцию (редукцию фага). В последнем случае геном фага в клетке не не реплицируется, а внедряется (интегрируется) в хромосому клетки хозяина (ДНК в ДНК), фаг превращается в профаг. Этот процесс получил название лизогении . Если в результате внедрения фага в хромосому бактериальной клетки она приобретает новые наследуемые признаки, такую форму изменчивости бактерий называют лизогенной (фаговой) конверсией. Бактериальную клетку, несущую в своем геноме профаг, называют лизогенной, поскольку профаг при нарушении синтеза особого белка - репрессора может перейти в литический цикл развития, вызвать продуктивную инфекцию с лизисом бактерии.

Умеренные фаги имеют важное значение в обмене генетическим материалом между бактериями - в трансдукции (одна из форм генетического обмена). Например, способностью вырабатывать экзотоксин обладают только возбудитель дифтерии, в хромосому которого интегрирован умеренный профаг, несущий оперон tox, отвечающий за синтез дифтерийного экзотоксина. Умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токсигенную.

По спектру действия на бактерии фаги разделяют на:

Поливалентные (лизируют близкородственные бактерии, например сальмонеллы);

Моновалентные (лизируют бактерии одного вида);

Типоспецифические (лизируют только определенные фаговары возбудителя).

На плотных средах фаги обнаруживают чаще с помощью спот (spot) - теста (образование негативного пятна при росте колоний) или методом агаровых слоев (титрования по Грациа).

Практическое использование бактериофагов.

1. Для идентификации (определение фаготипа).

2. Для фагопрофилактики (купирование вспышек).

3. Для фаготерапии (лечение дисбактериозов).

4. Для оценки санитарного состояния окружающей среды и эпидемиологического анализа.



ВИРУСОЛОГИЯ

Лекция №2

Возможность взаимодействия вируса и клетки обусловлены генетическими особенностями вируса и клетки. Условия среды определяют исход этого взаимодействия.

Типы взаимодействия:

1) Продуктивная вирусная инфекция

Клетка погибает, происходит репродукция вирусов;

2) Абортивная вирусная инфекция

Клетка не погибает, репродукции вирусов нет;

3) Латентная вирусная инфекция

репродукция вирусов и сохранение жизнеспособности клетки; органы и ткани, построенные из таких клеток, сохраняют свою функциональную активность;

4) Вирус-индуцированные трансформации

Клетки, инфицированные вирусом, приобретают новые, ранее не присущие им свойства; происходит репродукция вирусов.

Продуктивная вирусная инфекция

Лежит в базе развития острых вирусных инфекций. Сопровождается гибелью клетки и репродукцией вирусов. Условно делится на периоды→фазы→этапы.

I. Начальный период

1. Фаза адсорбции

а) неспецифическая адсорбция

действуют силы межмолекулярного взаимодействия (электростатические силы, ван-дер-ваальсовы силы); осуществляется за счёт сродства химических группировок; она непрочная, непродолжительная; если смесь вируса и клетки встряхнуть, то эта связь может нарушиться;

б) специфическая адсорбция

в базе – химическое сродство рецепторных белков вириона и рецепторов соответствующей клетки;

за счёт этих рецепторов вирусы поражают строго определœенные клетки (к примеру, вирус гриппа поражает эпителий верхних дыхательных путей).

Таким образом специфическая адсорбция лежит в базе тропизма вирусов.

Рецепторы вирусов настолько специфичны, что они различны даже для близкородственных вирусов.

Факторы, влияющие на адсорбцию:

– множественность инфекции

(количество вирионов на одну чувствительную клетку);

– наличие электролитов

(в среде, богатой электролитами, адсорбция идет эффективнее);

– суспензия или пласт клеток и т.п.

(в суспензии адсорбция идет лучше, так как больше площадь взаимодействия);

– температура

(при снижении температуры адсорбция снижается, при повышении температуры адсорбция повышается);

– наличие ПАВ

(антитела, лекарственные вещества и т.п. угнетают развитие адсорбции);

– гормональный фон

(в условиях макроорганизма;

к примеру: гормон паращитовидной желœезы снижает эффективность адсорбции, гормон щитовидной желœезы – повышает).

Процесс адсорбции протекает за короткий промежуток времени. Через 15-20 минут она становится специфичной.

2. Фаза проникновения вирионов в клетку

Первый способ проникновения самый простой и наиболее частый – виропексис (фагоцитоз) – в клетках, обладающих фагоцитарной активностью: макрофаги, нейтрофильные лейкоциты.

На месте адсорбции вириона образуется инвагинация→края мембраны слипаются → вирион оказывается в клетке, окруженный частью клеточной мембраны. Формируется фагосома, которая сливается с клеточными лизосомами и формируется фаголизосома, внутри которой находится вирион. Лизосомальные ферменты начинают разрушать белковую оболочку вириона (депротеинизация), что приводит к освобождению нуклеиновой кислоты.

Второй способ проникновения в клетку:

Фаги впрыскивают свою нуклеиновую кислоту в клетку;

Третий способ проникновения:

Некоторые вирусы на своей поверхности имеют ферменты, расщепляющие компоненты клеточной стенки (нейраминидаза вируса) → образуется отверстие, через ĸᴏᴛᴏᴩᴏᴇ нуклеиновая кислота попадает в клетку.

3. Фаза депротеинизации

Процесс разрушения белковых оболочек, ʼʼраздеваниеʼʼ вируса и освобождение нуклеиновой кислоты.

Не всœегда эти процессы идут в такой последовательности. К примеру, у сложных вирусов депротеинизация начинается с момента адсорбции.

В конце начального периода образуется уникальная биологическая система: клетка, в которой есть собственный геном + нуклеиновая кислота (геном) вируса и один синтетический аппарат → ʼʼдвоевластиеʼʼ. Это крайне неустойчивая структура.

В случае если клетка разрушает вирусную нуклеиновую кислоту → сохранение клетки – абортивная вирусная инфекция.

II. Средний период

1. Фаза синтеза ранних ʼʼвирусныхʼʼ белков-ферментов

наступает после высвобождения вирусного генома. Клеточнообусловленные синтезы снижаются на 60% Происходит репрессия клеточного генома и активация вирусного. Начинается с синтеза ранних ʼʼвирусныхʼʼ белков (РВБ).

РВБ – белки, которые обеспечивают подавление клеточного генома.

В норме часть клеточных генов не функционирует, т.к. в клетке есть группа генов, ответственных за синтез регуляторного белка гистона. В ходе взаимодействия вируса и клетки вирусная нуклеиновая кислота активирует гены, ответственные за синтез гистонов, что ведет к подавлению функций клеточного генома. В случае если клеточный геном подавляется → ʼʼдвоевластиеʼʼ заканчивается → формируется биологическая структура, представленная клеточным синтетическим аппаратом и геномом вируса. Теперь клетка не способна на синтез собственных макромолекул. Произошла смена генетической информации – СИ-фаза.

2. Фаза репликации вирусной нуклеиновой кислоты

Двунитевые ДНК

нити расплетаются → на матрице каждой нити формируются дочерние молекулы двуцепочечной вирусной ДНК с участием клеточной ДНК-зависимой ДНК-полимеразы.

Однонитевые ДНК

синтез дочерних молекул на материнской ДНК происходить не может (т.к. способна синтезироваться только комплементарная ДНК). По этой причине на матрице материнской ДНК сначала синтезируется комплементарная нить (репликативная форма), которая служит основой для синтеза дочерних ДНК.

Вирусная РНК должна быть в двух формах:

I функционально тождественна иРНК клеток, ᴛ.ᴇ. идет на рибосомы и обеспечивает синтез белка. Это ʼʼ+ʼʼ нить. У ʼʼ+ʼʼ РНК в процессе репликации синтезируется ʼʼ-ʼʼ нить (репликативная форма), которая служит матрицей для синтеза дочерних молекул ʼʼ+ʼʼ нити. Синтез РНК на матрице РНК осуществляет уникальный фермент РНК-зависимая РНК-полимераза – геномный фермент.

II форма - ʼʼ-ʼʼ нить - не может служить матрицей для синтеза белка (не выполняет функции иРНК). На матрице этих ʼʼ-ʼʼ нитей синтезируется ʼʼ+ʼʼ нить (промежуточная), которая идет на рибосомы, где участвует в синтезе белка. Она же является матрицей для синтеза ʼʼ-ʼʼ нитей РНК, которые войдут в состав новых вирионов.

Ретровирусы – РНК-вирусы. У них реализация генетической информации идет по схеме РНК → ДНК → РНК → белок и осуществляется при участии уникального фермента обратной транскриптазы (ревертаза, РНК-зависимая ДНК-полимераза).

3. Фаза синтеза вирусных белков

т.к. клеточный геном подавлен, клетка начинает воспроизводить вирусные белки. Репликация нуклеиновой кислоты происходит в ядре клетки, а синтез белка на рибосомах. Первый процесс предшествует второму, ᴛ.ᴇ. они разобщены во времени и пространстве – дисъюнктивный способ репродукции вирусов.

III. Заключительный период

Фаза 1. Сборка новых вирионов

При этом формируются как полноценные, так и дефектные вирионы-ʼʼпустышкиʼʼ)– не содержат нуклеиновой кислоты.

Фаза 2. Выход из клетки

Вновь собранные вирионы покидают инфицированную клетку.

Механизмы:

1. Клеточный геном погиб → гибель и разрушение клетки → вирионы выходят в межклеточное пространство;

2. Механизм обратного виропексиса (≈экзоцитоз)

Новые вирионы подходят к клеточной мембране → вытягивание → разрыв мебраны. В ходе этого процесса новые вирионы могут включить в состав своих суперкапсидных структур элементы клетки-хозяина.

Время репликации у разных вирусов различно. У фагов 30-40 минут, у некоторых вирусов человека – десятки часов. В результате одного цикла может образовываться от нескольких десятков до нескольких тысяч новых вирионов - ʼʼурожайностьʼʼ вирусов.

Латентные вирусные инфекции - лежат в базе медленных вирусных инфекций. Это большая группа заболеваний человека и животных. Οʜᴎ протекают длительно, десятилетиями, без клинических проявлений, но неизбежно прогрессируют и заканчиваются летально. К ним относятся рассеянный склероз, амиотрофический склероз, прогрессирующий склерозирующий панэнцефалит. И другие.

Два типа латентных вирусных инфекций:

Безусловная (абсолютная) – всœе клетки органа или ткани поражены вирусом. Выделить клон свободных от вирусов клеток не удается. Но в пораженных клетках клеточный и вирусный геномы сосуществуют: 95-98% синтеза в такой клетке детерминированы клеточным геномом, а 2-5% - вирусным. При этом это соотношение непостоянно и может сдвигаться в пользу вирусных и тогда – клиническое проявление. А т.к. поражены всœе клетки органа и ткани, то они всœе перестают функционировать. Как они сосуществуют? В случае если не вся, то часть ДНК вируса встраивается в геном клетки. В случае если РНК, то она существует наряду с другими РНК этой клетки.

Условная или относительная – вирусом поражены единичные клетки ткани или органа, в них инфекция протекает по продуктиному типу, но т.к. поражены единичные клетки, то ткань или орган в целом сохраняют свою функцию. Почему поражаются отдельные клетки? Различная клональная структурная организация. Невысокая урожайность. Существует целый ряд ингибиторов, которые препятствуют распространению вирусной инфекции на всœе клетки.

Такой тип взаимодействия должна быть нарушен на любом этапе до фазы смены информации → формируется абортивная вирусная инфекция.

Взаимодействие вируса с клеткой - понятие и виды. Классификация и особенности категории "Взаимодействие вируса с клеткой" 2017, 2018.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...