Типы сенсоров. Типы сенсорных дисплеев в мобильном телефоне

Предназначен, в первую очередь, для вывода и ввода информации за счёт жестикуляции или нажатия на дисплей. Сейчас существует множество разновидностей, позволяющих напрямую взаимодействовать с устройством. Встроенные сенсоры можно увидеть во многих устройствах: смартфонах, планшетах, плеерах, видеокамерах и фотоаппаратах. Существующие типы сенсорных экранов обладают своими достоинствами и недостатками. Для того чтобы решить, какой из них лучше, необходимо более детально изучить особенности каждого. В нашем случае мы остановимся на сенсорных дисплеях, встроенных в планшеты.

Отметим, что типы сенсорных разделяются на четыре основных типа:

  • Ёмкостные.
  • Проекционно-ёмкостные.
  • Дисплеи с поверхностно-акустическими волнами (ПАВ).
  • Резистивные.

Наиболее распространены ёмкостные и резистивные. Их главное отличие заключается в том, что первые распознают касание, а вторые нажатие (стилусом или пальцем). По правде сказать, резистивные сенсоры устанавливаются в более дешёвых моделях планшетов и считаются пережитками. Ёмкостные широко используются в новых моделях мобильных устройств.

Почему, собственно говоря, они так называются? Объект большой ёмкости проводит по устройства электрический переменный ток. Поверхность представляет собой не что иное, как стеклянную панель, покрытую резистивным прозрачным сплавом. Проводящий слой обладает большим уровнем напряжения и при соприкосновении с каким-либо предметом или пальцем совершается утечка тока. В результате этого датчиками фиксируется утечка тока, вследствие чего происходит мгновенное вычисление координат точки нажатия.

Преимущества дисплея

Существуют проекционно-ёмкостные типы экранов . Они считаются более продвинутыми и отличаются повышенной чувствительностью, быстрой реакцией, а главное, позволяют взаимодействовать с устройством через перчатки. Очень важным фактором является поддержка технологии мультитач. Благодаря ей можно нажимать на поверхность двумя или даже тремя пальцами. Это обусловлено тем, что одновременно находятся координаты нескольких точек, на которых направлено действие.

Главными достоинствами передовых сенсорных экранов является устойчивость к любым загрязнениям, прочность и надёжность. Кроме того, можно спокойно осуществлять работу на проекционно-ёмкостных экранах в холодную погоду. Они отличаются стойкостью к низким температурам. Быстрая реакция является безусловным преимуществом перед ёмкостным дисплеем. Достаточно одного лёгкого касания для вывода информации.

Применение в жизни

Следует сказать о том, что ёмкостные дисплеи устанавливают не только в планшеты, но также и в информационные киоски, банкоматы и охраняемые здания. Круг использования проекционно-ёмкостных дисплеев намного шире. Их можно встретить в платёжных терминалах, ноутбуках, электронных киосках и любых устройствах, которые поддерживают технологию мультитач. Для взаимодействия с проекционно-ёмкостными экранами можно использовать специальный токопроводящий стилус, однако его мало кто применяет. Гораздо удобнее совершать все действия в ручном режиме.

Говорить о недостатках ёмкостных и проекционно-ёмкостных экранов не приходится. Единственным минусом, пожалуй, является их высокая стоимость, однако она в полной мере себя оправдывает. Если хотите приобрести устройство с качественным сенсорным типом экрана, придётся заплатить соответствующую сумму.

Характеристики резистивных экранов

Устройство и применение

Более простой и дешёвой технологией является резистивный сенсор, состоящий из пластиковой мембраны и проводящей подложки. При нажатии на мембранную часть происходит лёгкое замыкание с подложкой. Электроника управления при этом вычисляет сопротивление, которое возникает между краями двух частей. В результате происходит вычисление координат точки нажатия.

Зачастую резистивные сенсорные экраны используются в недорогих моделях планшетов и других мобильных устройствах, коммуникаторах, КПК, медицинском оборудовании и промышленных управленческих устройствах. К гаджетам со встроенным резистивным дисплеем в комплекте идёт специальный стилус. Несмотря на это, с таким можно работать и любым другим тупым предметом. Реагируют резистивные дисплеи и на пальцы, даже в перчатках. Правда, есть один небольшой нюанс - воздействие на поверхность не должно быть очень сильным , в противном случае можно повредить экран.

Особенности использования

Если говорить о недостатках дисплеев резистивного типа, то они очень чувствительны к любым механическим повреждениям . Устройство с таким экраном ни в коем случае нельзя носить в кармане с ключами или использовать вместо стилуса другой предмет. Иначе на дисплее останутся некрасивые царапины, а это может привести к снижению чувствительности. Для того чтобы обезопасить себя от подобных рисков, необходимо наклеить защитную плёнку на резистивную поверхность. Кроме того, при низких температурах он всё равно будет работать плохо. Если говорить о прозрачности, пропускается всего 84% света, исходящего от экрана - это очень низкий показатель.

Многие пользователи задаются вопросом: какой тип сенсорного экрана лучше? Однозначного ответа нет. Если по цене, то самыми недорогими являются дисплеи резистивного типа. По качеству, естественно, опережают проекционно-ёмкостные. Однако есть ещё одни тип сенсорного экрана, о котором стоит рассказать.

Такие дисплеи работают следующим образом: пьезоэлементы, расположенные по углам устройства, преобразуют приходящий электросигнал в ультразвуковые волны. Они тут же поступают на поверхность дисплея. Вдоль краёв дисплея распространены отражающие элементы, а на противоположной стороне присутствуют сенсоры, которые фиксируют и передают волны ультразвука. Преобразователь трансформирует их в электросигнал. При касании он ослабляется, и вычисляются координаты касания. Следует отметить, что вычисляется и интенсивность касания, чего нет у других типов экранов. Однако, в отличие от своих конкурентов, этот вариант не в полной мере определяет координаты, следовательно, вы не сможете рисовать на таких экранах .

обладают высокой прозрачностью и долговечностью . Экран практически не имеет проводящих поверхностей и может выдержать до 50 миллионов касаний. Существенным недостатком является то, что загрязнители блокируют работу устройства, а корректная работа дисплея осуществляется только во взаимодействии с поглощающими акустическими волнами. Дисплеи ПАВ встраивают не только в планшеты, но и в игровые автоматы, охраняемые киоски и прочие устройства.

Благодаря сенсорным экранам значительно упростился графический интерфейс и управление . Доступ к функциям стал более простым. Сенсорные дисплеи позволяют делать минимум движений и получать информацию в полном объёме. Несмотря на то, что видов существует несколько, все они имеют свои преимущества. Какое устройство выбирать, решать только пользователю, отталкиваясь от собственных финансовых возможностей и предпочтений.

В наше время сенсорные экраны уже давно перестали быть экзотикой. Внешне они все похожи, но являются ли эти дисплеи одинаковыми на самом деле? Давайте рассмотрим конструкцию основных типов чувствительных экранов, их достоинства, недостатки и область применения.

На сегодняшний день наибольшее распространение получили сенсоры, основанные на емкостной и резистивной технологиях, а также на их разновидностях.

«Мультитач»

Так называется технология, позволяющая распознавать нажатия на сенсорный экран в нескольких точках одновременно. Это открывает новые возможности в управлении устройством. Примером использования технологии «мультитач» может служить интерфейс Apple iPhone.

Емкостные сенсорные экраны

Например: Тне Prada Phoneby LG

Сенсорный дисплей, работающий по емкостному принципу, фактически реагирует на прикосновение. Он представляет собой стеклянную панель, покрытую прозрачным проводящим составом. По углам панели размещены четыре электрода, к которым подводится переменный ток. В тот момент, когда пользователь прикасается пальцем к такому экрану, электрический заряд с проводящего слоя перетекает по коже на тело человека. Контроллер экрана замеряет силу образующегося при этом тока по всем четырем электродам - она пропорциональна расстоянию от угла панели до точки касания. Сопоставляя полученные значения, можно узнать точные координаты места касания. Сенсоры, действующие по такому принципу, можно отличить «на ощупь» - они срабатывают от легкого прикосновения, причем быстрее и четче реагируют на нажатие подушечкой пальца, чем ногтем. Более того, на нажатия любыми другими предметами они не реагируют, в особенности если те являются непроводящими. Поэтому телефоном с таким экраном невозможно управлять рукой в перчатке. К тому же при снижении температуры электрические характеристики сенсора меняются, и экран начинает работать хуже. Добавим, что этот принцип, как правило, используется в ноутбучных тачпадах.

Например: Apple iPhone

Проекционно-емкостные экраны

Существует еще одна разновидность емкостного сенсора - проекционно-емкостный экран. На тыльной стороне его находится сетка электродов. В месте касания руки изменяется электрическая емкость (по законам электродинамики человеческое тело представляет собой конденсатор), контроллер определяет, в каком пересечении электродов это произошло, и вычисляет координаты. Подобные экраны, кроме высокой прозрачности и долговечности, имеют еще два важных преимущества - стекло-подложка может быть сделана сколь угодно прочной (и довольно толстой), к тому же они поддерживают «мультитач». Минус - более низкая точность по сравнению с обычной емкостной технологией.

Резистивные сенсорные экраны

Например: HTC Touch Diamond

Резистивный сенсор де-факто реагирует на давление. Экран состоит из двух пластин, между которыми находится состав, не проводящий электрический ток. Если коснуться наружной гибкой (и прозрачной) пластины пальцем (или любым другим предметом - в данном случае это не имеет значения), пластины замыкаются и в точке касания начинает протекать ток. Чтобы определить место касания, контроллер экрана попарно замеряет напряжение между электродами, размещенными по краям панели. Такой экран называется 4-проводным (существуют также 5-проводные, имеющие некоторые отличия).

Особенность резистивного экрана состоит в том, что для его срабатывания требуется физическое усилие, причем нажатия ногтем он распознает лучше, чем подушечкой, реагирует на любые прикасающиеся к поверхности предметы. Устройства с резистивными экранами часто комплектуются стилусами. Такой дисплей обеспечивает более высокую точность управления (стилусом реально попасть буквально в пиксел, тогда как пальцем на емкостном экране - только в достаточно большую по площади область), но из-за постоянного контакта с твердыми предметами гибкая пластина быстро покрывается царапинами. Именно резистивными экранами оснащено большинство мобильных устройств.

Другие типы сенсорных экранов

Существует еще ряд сенсорных технологий, нередко довольно экзотических. Например, использование сетки инфракрасных лучей или даже генерация ультразвуковых колебаний. Последняя известна как технология поверхностно-акустических волн. Есть системы и на основе камер, отслеживающих движение (здесь также поддерживается «мультитач»), и на основе тензопокрытий, при деформации которых меняется электрическое сопротивление.

Оснащенные сенсорными экранами устройства (мобильные телефоны, планшеты, нетбуки, даже персональные компьютеры) становятся все более популярными. Но если вы решились покупать устройство, экран которого реагирует на прикосновения, вам следует знать, что существуют разные типы сенсорных экранов .

Разные типы сенсорных экранов работают на разных физических принципах . Основных видов сенсорных экранов два - емкостные и резистивные. Существуют и другие типы, к примеру, экраны на поверхностно-акустических волнах, инфракрасные, оптические, тензометрические, индукционные (используются в ) и др. Но шанс столкнуться с этими типами экранов в повседневной жизни достаточно мал, поэтому поговорим о двух самых распространенных разновидностях тачскринов.

Типы сенсорных экранов: резистивный

Резистивный сенсорный экран - это более простая и дешевая технология . Такой экран состоит из двух основных частей: проводящая подложка и пластиковая мембрана. Когда вы нажимаете на мембрану, она замыкается с подложкой. При этом управляющая электроника вычисляет сопротивление, возникающее между краями мембраны и подложки, и таким образом определяет координаты точки нажатия.

Резистивные сенсорные экраны используются в КПК, коммуникаторах, некоторых моделях мобильных телефонов , POS-терминалах, планшетных компьютерах, промышленных устройствах управления, медицинском оборудовании. Обычно малогабаритные приборы, оснащенные резистивным экраном, имеют в наборе стилус, чтобы удобнее было нажимать на мембрану (при невысокой площади экрана сделать это пальцем затруднительно).

Весомое преимущество резистивных экранов - это их простота и дешевизна , что в итоге снижает цену всего устройства. Также они стойки к загрязнениям. Но главное - даже при отсутствии специального стилуса с ними можно работать практически любым твердым тупым предметом, который окажется под рукой. На прикосновения пальцев они тоже реагируют, даже если рука в перчатке, правда, прикосновение должно быть достаточно сильным.

Но есть у резистивных экранов и свои недостатки . Этот тип сенсорных экранов чувствителен к механическим повреждениям: если использовать вместо стилуса неподходящий предмет или, скажем, хранить телефон в одном кармане с ключами, можно легко его поцарапать. Поэтому для устройств с этим типом экранов лучше дополнительно приобрести специальную защитную пленку. Чувствительность резистивных экранов при низких температурах снижается. Кроме этого, прозрачность их тоже оставляет желать лучшего: они пропускают максимум 85% света, исходящего от дисплея.

Типы сенсорных экранов: емкостные

Емкостные сенсорные экраны используют тот факт, что предметы большой емкости (в данном случае - человек) проводят переменный электрический ток . Такие экраны представляют собой панель из стекла, которая покрыта прозрачным резистивным сплавом. На проводящий слой передается небольшое переменное напряжение. Если вы касаетесь пальца экраном или другим предметом, проводящим ток, происходит утечка тока, она фиксируется датчиками, и вычисляются координаты точки нажатия.

Бывают обычные емкостные экраны и проекционно-емкостные . Вторая технология - более «продвинутая». Такие экраны более чувствительны (скажем, реагируют на руку в перчатке, в зависимости от просто емкостных), поддерживают технологию мультитач (одновременное определение координат нескольких точек касания). Емкостные экраны используют в части банкоматов, информационных киосках и охраняемых помещениях. Проекционно-емкостные - в уличных электронных киосках, платежных терминалах, банкоматах, тачпадах ноутбуков, смартфонах и других устройствах с поддержкой технологи мультитач.

Достоинства таких сенсорных экранов - это долговечность, стойкость к большинству загрязнений (к тем, которые не проводят ток), высокая прозрачность экрана, возможность работы при низких температурах. При необходимости можно обеспечить высокую прочность - слой стекла на емкостном экране может быть толщиной до 2 см. Емкостные экраны реагируют на легчайшие прикосновения. Проекционно-емкостные экраны еще и поддерживают мультитач.

Недостаток емкостных экранов - более высокая стоимость по сравнению с резистивными . К тому же, такие экраны реагируют лишь на токопроводящие предметы: палец или специальный стилус (не такой, как используется с резистивными экранами). Некоторые умельцы умудряются использовать сосиски, но где гарантия, что сосиска окажется под рукой в нужный момент?

Как видите, разные типы сенсорных экранов имеют свои преимущества и недостатки , так что вам решать, какой из них более подходящий лично для вас.

Сначала тачскрины (сенсорные экраны) встречались достаточно редко. Их возможно было найти, только лишь в некоторых КПК, PDA (карманных компьютерах). Как известно, устройства такого плана так и не обрели широкого распространения, так как им не хватило самого важного, то есть, функциональности. История смартфонов напрямую связана с тачскринами. Именно поэтому в нынешнее время человека с «умным телефоном» сенсорным экраном сейчас не удивишь. Тачскрин получил широкое применение не только в модных дорогостоящих девайсах, но, даже, в относительно недорогих моделях современных телефонов. В чём же заключаются принципы работы 3-х типов сенсорных экранов, которые возможно встретить в современных устройствах.

Типы тачскринов

Сенсорные экраны уже не являются слишком дорогими. Кроме этого, тачскрины (touchscreen) сегодня намного «отзывчивее» - касания пользователя распознают просто превосходно. Именно эта характеристика проложила им дорогу к большому числу пользователей во всем мире. В нынешнее время существуют три основные конструкции тачскринов:

  1. Ёмкостные.
  2. Волновые.
  3. Резистивные или попросту «упругие».

Ёмкостный тачскрин: принцип работы

В тачскринах конструкции такого рода стеклянную основу покрывают слоем, который выполняет роль вместилища-накопителя заряда. Пользователь своим касанием высвобождает в определённой точке часть электрического заряда. Данное уменьшение определяется микросхемами, которые расположены в каждом углу экрана. Компьютером вычисляется разница электрических потенциалов, существующих между разными частями экрана, при этом, информация о касании в подробностях передаётся немедленно в программу-драйвер тачскрина.

Довольно важное преимущество ёмкостных тачскринов - это способность данного типа экранов сохранять практически 90 % от изначальной яркости дисплея. Из-за этого изображения на ёмкостном экране смотрятся более чёткими, чем на тачскринах, имеющих резистивную конструкцию.

Видео про ёмкостный сенсорный экран:

Будущее: волновые сенсорные дисплеи


На концах осей координатной сетки экрана из стекла располагается два преобразователя. Один из них является передающим, второй - принимающим. На стеклянной основе имеются и рефлекторы, «отражающие» электрический сигнал, который передаётся от одного к другому преобразователю.

Преобразователь-приёмник стопроцентно точно «знает» было ли нажатие, а также в какой конкретно точке оно произошло, так как пользователь своим касанием прерывает акустическую волну. При этом, стекло волнового дисплея не имеет металлического покрытия - это предоставляет возможность сохранить в полном объёме 100 % изначального света. В связи с этим, волновой экран представляет собой наилучший вариант для тех пользователей, которые работают в графике с мелкими деталями, потому, что резистивные и ёмкостные тачскрины не являются идеальными в вопросе чёткости изображений. Их покрытие задерживает свет, что в результате существенно искажает картинку.

Видео про принцип работы сенсорных экранов на ПАВ:

Прошлое: о резистивном тачскрине


Резистивная система - это обычное стекло, которое покрыто слоем проводника электричества, а также упругой металлической «плёнкой», также обладающей токопроводящими качествами. Между этими 2-мя слоями с помощью специальных распорок есть пустое пространство. Поверхность экрана покрыта специальным материалом, который обеспечивает ему защиту от механических повреждений, например, царапин.

Электрический заряд в процессе работы пользователя с тачскрином, проходит через два эти слоя. Каким же образом это происходит? Пользователь в определённой точке касается экрана и упругий верхний слой соприкасается с проводниковым слоем - только в этой точке. Потом компьютером определяются координаты той точки, которой пользователь коснулся.

Когда координаты становятся известны устройству, то специальный драйвер переводит прикосновения в команды, известные операционной системе. В данном случае можно провести аналоги с драйвером самой обычной компьютерной мышки, ведь он занимается точно тем же: объясняет операционной системе то, что конкретно хотел сказать ей пользователь посредством перемещения манипулятора или же нажатия кнопки. С экранами данного типа используют, как правило, специальные стилусы.


Резистивные экраны возможно обнаружить в относительно немолодых устройствах. Как раз таким сенсорным дисплеем оборудован IBM Simon - самый древний смартфон из тех, что были сознаны нашей цивилизацией.

Видео про принцип работы резистивного сенсорного экрана:

Особенности различных типов тачскринов

Наиболее дешёвыми сенсорными экранами, но, при этом, наименее чётко транслирующими изображение являются резистивные тачскрины. Кроме этого, они являются и самыми уязвимыми, ведь абсолютно любым острым предметом возможно серьёзно повредить достаточно нежную резистивную «плёночку».

Следующий тип, т.е. волновые тачскрины, представляют собой самые дорогостоящими среди себе подобных. При этом, резистивная конструкция, вероятнее всего, относится, всё-таки, к прошлому, ёмкостная - к настоящему, а волновая - к будущему. Понятное дело, что грядущее абсолютно никому стопроцентно не известно и, соответственно, в нынешнее время можно только лишь предполагать, какая именно технология имеет большие перспективы для использования её в будущем.

Для резистивной системы тачскринов не имеет никакого особого значения, коснулся резиновым наконечником стилуса или же просто пальцем пользователь экрана устройства. Достаточно того, что между двумя слоями произошло соприкосновение. При этом, ёмкостной экран распознает только лишь касания какими-то токопроводящими предметами. Зачастую пользователи современных устройств работают с ними с помощью собственных пальцев. Экраны волновой конструкции в этом отношении ближе к резистивным. Отдать команду возможно практически любым предметом - при этом нужно только избегать использования тяжёлых или же слишком маленьких объектов, например, стержень шариковой ручки для этого не подойдёт.

iPhone 2G был первым мобильным телефоном, управление которым полностью строилось на взаимодействии с сенсорным экраном. С момента его презентации прошло больше десяти лет, но многие из нас все еще не знают, как устроен Touchscreen. А ведь мы сталкиваемся с этим интуитивным средством ввода не только в смартфонах, но и в банкоматах, платежных терминалах, компьютерах, автомобилях и самолетах - буквально повсюду.
До тачскринов самым распространенным интерфейсом для ввода команд в электронные устройства были различные клавиатуры. Хотя, кажется, что у них с тачскринами нет ничего общего, на самом деле то, насколько сенсорный экран по принципам работы схож с клавиатурой, может удивить. Давайте рассмотрим их устройство в деталях.

Клавиатура представляет собой печатную плату, на которой устанавливается несколько рядов переключателей-кнопок. Вне зависимости от их конструкции, мембранной или механической, при нажатии каждой из клавиш происходит одно и то же. На компьютерной плате под кнопкой замыкается электрическая цепь, компьютер регистрирует прохождение тока в этом месте схемы, «понимает», какая клавиша нажата и выполняет соответствующую ей команду. В случае с сенсорным экраном происходит почти тоже самое.

Существует порядка десятка различных видов сенсорных экранов, однако большинство из этих моделей или давно устарело и не используется, или относится к экспериментальным и вряд ли когда-нибудь появится в серийных устройствах. Прежде всего, я расскажу об устройстве актуальных технологий, тех из них, с которыми постоянно взаимодействуете или хотя бы можете столкнуться в повседневной жизни.

Резистивный сенсорный экран

Резистивные сенсорные экраны изобретены еще в 1970 году и с тех пор изменились мало.
В дисплеях с такими сенсорами над матрицей располагается пара дополнительных слоев. Впрочем, оговорюсь, матрица здесь вовсе не обязательна. Первые резистивные сенсорные устройства не были экранами вовсе.

Нижний сенсорный слой состоит из стеклянной основы и называется резистивным слоем. На него наносится прозрачное металлическое покрытие, хорошо передающее ток, например, из такого полупроводника, как оксид индия-олова. Верхний слой тачскрина, с которым взаимодействует пользователь нажимая на экран, сделан из гибкой и упругой мембраны. Он называется проводящим слоем. В пространстве между слоями оставляют воздушную прослойку, либо равномерно усеивают его микроскопическими изолирующими частицами. По краям к сенсорному слою подводится четыре, пять или восемь электродов, связывающих его с датчиками и микроконтроллером. Чем больше электродов, тем выше чувствительность резистивного такчскрина, поскольку изменение напряжения на них постоянно отслеживается.


Вот экран с резистивным тачскрином включен. Пока ничего не происходит. Электрический ток свободно течет по проводящему слою, но когда пользователь дотрагивается до экрана, мембрана сверху прогибается, изолирующие частицы расступаются, и она касается нижнего слоя тачскрина, вступает в контакт. За этим следует изменение напряжения разом на всех электродах экрана.

Контроллер тачскрина обнаруживает изменения напряжения и считывает показания с электродов. Четыре, пять, восемь значений и все разные. По разнице в показаниях между правым и левым электродами микроконтроллер вычислит X-координату нажатия, а по различиям в напряжении на верхнем и нижнем электродах, определит Y-координату и, таким образом, сообщит компьютеру точку, в которой слои сенсорного слоя экрана соприкоснулись.

Резистивные сенсорные экраны могут похвастать длинным перечнем недостатков. Так, они в принципе не способны распознать двух одновременных нажатий, не говоря уже о большем числе. Они плохо ведут себя на холоде. Из-за необходимости в прослойке между слоями сенсора, матрицы таких экранов заметно теряют в яркости и контрастности, склонны бликовать на солнце, и в целом выглядят заметно хуже. Тем не менее, там, где качество изображения играет второстепенную роль, их продолжают применять в силу устойчивости к загрязнениям, возможности использования в перчатках и, что самое главное, низкой стоимости.

Такие средства ввода повсеместно монтируются в недорогих массовых устройствах, вроде информационных терминалов в общественных местах и все еще встречаются в устаревающих гаджетах, типа дешевых MP3-плееров.

Инфракрасный сенсорный экран

Следующим, куда менее распространенным, но, тем не менее, актуальным вариантом сенсорного экрана является инфракрасный тачскрин. Он не имеет ничего общего с резистивным сенсором, хотя и выполняет схожие функции.

Инфракрасный тачскрин сконструирован из массивов светодиодов и светочувствительных фотоэлементов, расположенных на противоположных сторонах экрана. Светодиоды подсвечивают поверхность экрана невидимым инфракрасным светом, образуя на ней нечто вроде паутины или координатной сетки. Это напоминает охранную сигнализацию, какой ее показывают в шпионских боевиках или компьютерных играх.

Когда к экрану что-то прикасается, не важно палец это, рука в перчатке, стилус, или карандаш, два или более луча прерываются. Фотоэлементы фиксируют это событие, контроллер тачскрина выясняет, какие из них недополучают инфракрасный свет и по их положению вычисляет зону экрана, в которой возникло препятствие. Остальное - сопоставить прикосновение с тем, какой элемент интерфейса находится на экране в этом месте - задача программного обеспечения.

Сегодня с инфракрасными сенсорными экранами можно столкнуться в тех гаджетах, чьи экраны обладают нестандартной конструкцией, там, где добавлять дополнительные сенсорные слои технически сложно или нецелесообразно - в электронных книгах на базе дисплеев E-link, например, Amazon Kindle Touch и Sony Ebook. Кроме того, устройства с подобными сенсорами из-за простоты и ремонтопригодности приглянулись военным.

Емкостный сенсорный экран

Если в резестивных сенсорных экранах компьютер регистрирует изменение проводимости, последовавшее за нажатием на экран, непосредственно между слоями сенсора, то емкостные сенсоры фиксируют прикосновение непосредственно.

Человеческое тело, кожа - хорошие проводники электричества и обладают электрическим зарядом. Обычно это замечаешь пройдясь по шерстяному ковру или сняв любимый свитер, а затем прикоснувшись к чему-либо металлическому. Все мы знакомы со статическим электричеством, испытывали его действие на себе и видели крошечные искры, срывающиеся с наших пальцев в темноте. Более слабый, незаметный обмен электронами между человеческим телом и различными проводящими поверхностями происходит постоянно и именно его фиксируют емкостные экраны.

Первые такие тачскрины назывались поверхностно-емкостными и были логичным развитием резистивных сенсоров. В них всего один проводящий слой, похожий на тот, что использовался ранее, устанавливался прямо поверх экрана. К нему также присоединялись чувствительные электроды, на этот раз по углам сенсорной панели. Следящие за напряжением на электродах датчики и их программное обеспечение были сделаны заметно чувствительнее и теперь могли улавливать малейшие изменения в течении электрического тока по экрану. Когда палец (другой проводящий ток предмет, например, стилус) касается поверхности с поверхностно-емкостным тачскрином, проводящий слой немедленно начинает обмениваться с ним электронами, а микроконтроллер это замечает.

Появление поверхностно-емкостных тачскринов стало прорывом, однако из-за того, что нанесенный прямо поверх стекла токопроводящий слой было легко повредить, они не были пригодны для устройств нового поколения.


Для создания первого iPhone потребовались проекционно-емкостные сенсоры. Этот тип тачскринов быстро стал наиболее распространенным в современной потребительской электронике: смартфонах, планшетах, ноутбуках, моноблоках и прочих бытовых устройствах.

Верхний слой экрана с тачскрином этого типа выполняет защитную функцию и может быть сделан из закаленного стекла, например, знаменитого Gorilla Glass. Ниже располагаются тончайшие электроды, образующие сетку. Поначалу их накладывали друг на друга в два слоя, затем для уменьшения толщины экрана стали располагать на одном уровне.

Выполненные из полупроводниковых материалов, в том числе уже упоминавшегося оксида индия-олова, эти токопроводящие волоски создают электростатическое поле в местах своего пересечения.


Когда палец касается стекла, за счет электропроводных свойств кожи он искажает локальное электрическое поле в местах ближайших пересечений электродов. Это искажение может быть измерено, как изменение емкости в отдельно взятой точке сетки.

Поскольку массив электродов делается достаточно мелким и плотным, такая система способна отслеживать касание очень точно и без проблем улавливает сразу несколько прикосновений. Кроме того, отсутствие дополнительных слоев и прослоек в бутерброде из матрицы, сенсора и защитного стекла положительно сказывается на качестве изображения. Правда, по той же причине, разбитые экраны, как правило, заменяются полностью. Однажды собранный воедино, экран с проекционно-емкостным сенсором чрезвычайно сложно поддается ремонту.

Сейчас преимущества проекционно-емкостных тачскринов не звучат, как что-то удивительное, но на момент презентации iPhone они обеспечили технологии колоссальный успех, несмотря на объективные минусы - чувствительность к загрязнениям и влажности.

Чувствительные к давлению сенсорные экраны - 3D Touch

Идейным предшественником сенсорных экранов, чувствительных к давлению, стала фирменная технология Apple, под названием Force Touch, применявшаяся в умных часах компании, MacBook, MackBook Pro и Magic Trackpad 2.

Опробовав на этих устройствах интерфейсные решения и различные сценарии использования распознавания силы нажатия, Apple начала внедрение похожего решения в свои смартфоны. В iPhone 6s и 6s Plus распознавание и измерение давления стало одной из функций тачскрина и получило коммерческое наименование 3D Touch.


Хотя в Apple и не скрывали, что новая технология лишь модифицирует привычные нам емкостные сенсоры и даже показали схему, в общих чертах объяснявшую принцип ее действия, подробности об устройстве сенсорных экранов с 3D Touch появились только после того, как первые iPhone нового поколения были разобраны энтузиастами.

Для того, чтобы научить емкостной сенсорный экран распознавать нажатия и различать несколько степеней давления, инженерам из Купертино потребовалось пересобрать бутерброд сенсорного экрана. Они внесли изменения в отдельные его части и добавили к емкостному еще один, новый слой. И, что интересно, делая это, они явно вдохновлялись устаревшими резистивными экранами.


Сетка емкостных сенсоров осталась без изменений, однако она была перенесена назад, ближе к матрице. Между набором электрических контактов, следящих за местом прикосновения к дисплею, и защитным стеклом был интегрирован дополнительный массив из 96 отдельных датчиков.


Его задача заключалась не в том, чтобы определить местоположение пальца на экране iPhone. С этим по-прежнему отлично справлялся емкостный тачскрин. Эти пластины необходимы для обнаружения и измерения степени изгиба защитного стекла. Компания Apple специально для iPhone заказала у Gorilla Glass разработку и производство такого защитного покрытия, которое бы сохраняло прежнюю прочность и, в то же время, было достаточно гибким, чтобы экран мог реагировать на давление.

На этой разработке можно было закончить материал, повествующий о сенсорных экранах, если бы не еще одна технология, которой несколько лет назад прочили большое будущее.

Волновые сенсорные экраны

Неожиданно, но они не используют электричество и даже не имеют ничего общего со светом. Технология Surface Acoustic Wave system для определения точки прикосновения применяет поверхностные акустические волны, распространяющиеся вдоль поверхности экрана. Ультразвук, создаваемый пьезоэлектрическими элементами по углам, слишком высок для того, чтобы его мог уловить человеческий слух. Он распространяется взад и вперед, многократно отражаясь от краев экрана. Звук анализируется на предмет аномалий, создаваемых прикасающимися к экрану предметами.

Недостатков у волновых сенсорных экранов не много. Они начинают ошибаться после сильного загрязнения стекла и в условиях сильного шума, но, при этом, в экранах с таким сенсором нет дополнительных слоев, увеличивающих толщину и влияющих на качество изображения. Все компоненты сенсора прячутся под рамкой дисплея. Кроме того, волновые сенсоры позволяют точно подсчитывать площадь соприкосновения экрана с пальцем или другим предметом и по этой площади косвенно рассчитать силу нажатия на экран.

Мы уже вряд ли столкнемся с этой технологией в смартфонах из-за нынешней моды на безрамочные дисплеи, но несколько лет назад компания Samsung экспериментировала с Surface Acoustic Wave system в моноблоках, а в качестве комплектующих для игровых автоматов и рекламных терминалов панели с акустическими тачскринами продаются и сейчас

Вместо заключения

За очень краткий срок тачскрины завоевали мир электроники. Несмотря на отсутствие тактильного отклика и другие свои недостатки, сенсорные экраны стали очень интуитивным, понятным и удобным методом ввода информации в компьютеры. Не в последнюю очередь, своим успехом они обязаны разнообразием технических реализаций. Каждая со своими преимуществами и недостатками, подходящая для своего класса устройств. Резистивные экраны для самых дешевых и массовых гаджетов, емкостные экраны для смартфонов и планшетов и настольных компьютеров с которыми мы взаимодействуем каждый день и инфракрасные тачскрины для тех случаев, когда конструкцию экрана следует оставить в неприкосновенности. В заключение, остается лишь констатировать, что сенсорные экраны с нами надолго, замены им в ближайшем будущем не предвидится.

В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...