Защита акустических систем в усилителе звука схема. Радио для всех - защищаем динамики ас

Что система защиты акустических систем в современном усилителе мощности быть должна и определились с требованиями, предъявляемыми к подобным системам.

Одно из основных требований — это быстродействие . При любом потенциально опасном для колонок воздействии они должны быть отключены от выхода усилителя мощности как можно быстрее.

Рассмотрим систему защиты последовательно: от входа до выхода (реле), и определим, как различные узлы системы влияют на её быстродействие.

На входе системы защиты акустических систем для выделения из звукового сигнала постоянной составляющей обычно устанавливается фильтр низкой частоты (ФНЧ).

Чтобы оптимизировать быстродействие системы защиты и в тоже время исключить ложные срабатывания необходимо определить верхнюю граничную частоту ФНЧ . На практике для однополосных систем предел в 20Гц вполне достаточен и обеспечивает минимальную задержку в 25 мс. Для реального звукового сигнала из-за несимметричности полуволн на более высоких частотах большей задержки не требуется. Кроме того, в широкополосных акустических системах средне- и высокочастотные динамики чаще всего подключаются через конденсаторы фильтров кроссовера, которые обеспечивают их дополнительную защиту от постоянной составляющей.

Для систем bi-amping или tri-amping придётся использовать несколько систем защиты, пересчитав номиналы элементов ФНЧ для повышения быстродействия системы и надёжной защиты более чувствительных к постоянной составляющей СЧ- и ВЧ-динамиков.

В качестве ФНЧ обычно используется простой однозвенный фильтр с наклоном характеристики 6 дБ/октаву. Может показаться, что лучше более сложные фильтры: двух или трёхзвенные. Но, как показали эксперименты, с ними быстродействие системы защиты получается хуже, т.к. обеспечивая лучшую фильтрацию высоких частот, они хуже (с большей задержкой) выделяют постоянную составляющую сигнала.

В таблице приведены значения ёмкости конденсатора фильтра для использования системы защиты с различными системами усиления: широкополосными, bi-amping, tri-amping и с различными частотами разделения для многополосных систем:

Резистор (R1 и R2) во всех случаях используется на 100 кОм.

Не следует использовать в качестве конденсатора С1 полярные электролитические конденсаторы , потому как даже небольшое напряжение обратной полярности часто приводит их к выходу из строя, что снижает надёжность системы. Если есть проблемы с неполярным электролитическим конденсатором, то его легко можно заменить двумя полярными, включив их по представленной схеме:

Если с некоторыми типами музыки на большой громкости будут наблюдаться ложные срабатывания системы защиты, то ёмкость конденсатора фильтра придётся увеличить. Но максимум до 47мкФ иначе время задержки будет недопустимо велико.

Следующий элемент влияющий на быстродействие системы — детектор напряжения. Именно он определяет порог срабатывания системы . Разумеется, чем ниже порого срабатывания, тем мы имеем более быстродействующую систему.

Рассмотрим несколько типовых схем детекторов.

Довольно типичная схема даже для промышленных аппаратов:

При тестировании схема показала надёжное срабатывание при положительном напряжении на входе порядка 0,8-1В и отрицательном напряжении свыше -4В. Если для положительного напряжения порог срабатывания хороший, то для отрицательного напряжение полученное значение оставляет желать лучшего.

Другая схема, довольно популярная на просторах Рунета показала примерно аналогичные результаты:

Не буду утомлять вас описанием всех исследованных схем. Приведу пример схемы, которая показала очень хорошие результаты — одинаковые значения напряжения срабатывания (порядка 0,7В) для положительного и отрицательного входных напряжений:

Увеличение по клику

Кроме того данная схема обеспечивает задержку подключения акустических систем после включения усилителя и отключение акустических систем при пропадании любого из напряжений питания усилителя.

В качестве оптронов здесь отлично работают оптроны PC817 из компьютерных блоков питания. Такие же (или аналогичные) оптроны можно найти в блоках питания мониторов, DVD-проигрывателях и даже зарядках для мобильных телефонов и смартфонов.

Следующий способ повышения быстродействия системы защиты довольно экзотический, так как в радиолюбительских конструкциях практически не встречается (из-за некоторого усложнения схемы). Способ состоит в снижении напряжения на катушке реле после её срабатывания. Дело в том, что указанное на реле напряжение — это напряжение срабатывания. Большинство современных реле позволяют после замыкания контактов снизить напряжение на катушке в 2-3 раза. При этом контакты останутся по-прежнему надёжно замкнуты, а время отпускания контактов (т.е. по сути время срабатывания защиты) сократится в несколько раз. Но, как уже было сказано, такой способ требует усложнения схемы.

Следующий способ повышения быстродействия системы защиты достаточно простой, дешёвый, но почему-то так же редко встречается в практических конструкциях.

Сначала немного теории. Как известно, обмотка реле по сути является катушкой индуктивности из-за чего при подключении или отключении напряжения на её контактах в катушке возникает противо-ЭДС. Чтобы вы имели представление о величине противо-ЭДС приведу результаты экспериментов.

Для реле с относительно небольшой катушкой на 24 В (сопротивление обмотки было 730 Ом) напряжение противо-ЭДС, которое наводилось на обмотке при отключении составило свыше 500В . Понятно, что без принятия соответствующих мер по снижению напряжения противо-ЭДС, надёжность такой системы будет весьма сомнительной. Существует риск выхода из строя и самого реле при частых срабатываниях, и силового транзистора, управляющего реле. Либо нам потребуется дорогой высоковольтный транзистор.

Избавится от противо-ЭДС можно простым народным методом — поставить диод в обратном включении параллельно обмотки реле:

Однако, многие радиолюбители не знают, что эта мера приводит к существенному снижению быстродействия реле. Эксперименты проводились для реле типа OMRON G6B-2214P-US-DC12. Без применения защитного диода время размыкания контактов составило около 1,2 мсек. После установки защитного диода время размыкания контактов увеличилось до 8 мсек, т.е. в разы!

Существенно сократить время размыкания реле при наличии защитного диода поможет... стабилитрон :

Как показали эксперименты, для такого варианта время размыкания контактов составляет всего 2,5 мсек, т.е. всего в два раза выше, чем без защитных цепей.

Стабилитрон необходимо выбирать с напряжением стабилизации равному напряжению срабатывания реле.

Приведенные выше советы и схемы позволяют радиолюбителям довольно легко доработать уже имеющиеся системы защиты акустических систем как в самодельных, так и в промышленных аппаратах с целью повышения их быстродействия.

Как мы уже выяснили в , для обеспечения надёжной защиты акустических систем наша система защиты должна быть надёжной сама по себе. О том, что влияет на надёжность схемы и как её улучшить поговорим в следующий раз.

Продолжение следует.


Существует множество вариантов зашиты АС от постоянного напряжения, щелчков при включении и выключении. Самые совершенные из них собраны на микроконтроллерах, управляют большим числом каналов, имеют дополнительные функции, например - датагорский кит

Удобны, функциональны и малогабаритны так же устройства на специализированных микросхемах. К сожалению, они не всегда доступны, их доставка по почте может занять много времени.

Мне стало интересно - какая схема из дискретных элементов проста, дёшева, функциональна и нуждается в минимальной настройке. Наиболее отвечающую, на мой взгляд, этим требованиям схему, предлагаю вашему вниманию.
Поскольку статья рассчитана в основном на начинающих радиолюбителей, я постараюсь подробно описывать даже простые вещи.

Прототип защиты АС - схема А. Котова

На первый взгляд, есть широкий выбор схем, но при ближайшем рассмотрении оказывается, что они имеют недостатки - много деталей, дефицитные детали, низкая чувствительность, необходимость настройки, работоспособность в узком диапазоне напряжений питания и т. п.

Наиболее подходящей оказалась .

Однако, и эта схема не лишена недостатков:
- нет быстрого отключения АС при выключении усилителя,
- строго определенное напряжение питания,
- весь потребляемый ток протекает через светодиод,
- режим работы с «оторванной базой» VT10.
Кроме того, нет диаграммы напряжений и рекомендаций по настройке, нет рисунка печатной платы.

Усовершенствованная схема устройства защиты акустических систем

Эти недостатки легко устранимы, вот доработанный мной вариант.

Сохранена и продолжена нумерация деталей схемы А. Котова.
Хочу отметить достоинства и особенности схемы:
- задержка включения составляет оптимальные 4 секунды, определяется цепочкой R5C3,
- цепь D5R8R9C4 при выключении из сети позволяет быстро обесточить реле и отключить АС,
- после срабатывания защиты (отключении реле), конденсатор С3 разряжается быстро, а заряжается через резистор R5 медленно, поэтому не будет быстрых хаотичных переключений,
- устройство работает в широком диапазоне напряжений, от напряжения срабатывания реле (и плюс 2 В) до 36 В (предел для TL431),
- практически единственный резистор, требующий подбора - R7 служит для погашения избыточного для реле напряжения, номиналы остальных резисторов могут отличаться в несколько раз и не требуют замены в широком диапазоне напряжений питания,
- все элементы, кроме TL431, работают при очень малых токах, что обеспечивает высокую надежность,
- применение TL431 обеспечивает ключевой режим работы реле,
- напряжения на конденсаторах кроме С4 очень малы, не более 2,5 В, что позволяет использовать емкости на низкие напряжения, поэтому я испытал вариант с одиночными полярными конденсаторами С1 и С2 на низкое напряжение,
- годится любой светодиод (лучше яркий) т. к. ток через него задается резистором,
- чувствительность очень высока (порядка 1 В), ее лучше загрубить, для этого на плате предусмотрены площадки под SMD резисторы (на схеме серым цветом).

Собственный БП

Если запитать УЗ от основного БП усилителя (как у А. Котова), при выключении сети, реле не отпустит сразу из-за больших емкостей БП и возможен щелчок, треск и т. п. Здесь же из-за очень малой ёмкости С4 = 1-4,7 мкФ реле отпускает сразу.

Можно взять переменку с трансформатора основного БП УНЧ, тогда возможно придется изменить делитель R8R9, чтобы снизить напряжение.

Для «универсальности» данной схемы нужен блок питания с маломощным трансформатором с низким напряжением вторичной обмотки. Я использовал трансформатор ~230/12 В, мощностью 2 ВА. Блок питания выполнен на плате той же ширины, что и узел защиты, их удобно разместить на одной плате.


Наличие отдельного блока питания позволяет использовать узел защиты с любым усилителем, в том числе с макетируемым, что особенно удобно т. к. АС подвергаются повышенной опасности именно в этом случае.

Применённые детали и настройка

Установлено реле «OMRON G2R-2» на 12VDC в прозрачном корпусе. Это сделано не случайно - хотя оно имеет габариты большие, чем у аналогичных в неразборном непрозрачном корпусе, его можно открывать и чистить контакты. Рекомендую при использовании неразборного реле, заранее осторожно распилить его корпус так, чтобы крышку с него можно было бы снимать и ставить на место. Особенно советую в случае б/у реле.

Герметичные реле обычно меньше по размерам, поэтому легко устанавливаются с минимальными доработками печатной платы. Поскольку я расположил реле и зажимы с винтовыми клеммами достаточно плотно, при повторении платы надо убедиться в идентичности размеров зажимов, в противном случае чуть-чуть подкорректировать печатную плату. Можно обойтись без зажимов, это даже надежнее, но неудобно, особенно при настройке макетов усилителей.

При отсутствии ошибок в монтаже и исправных деталях, схема начинает работать сразу , надо только рассчитать резистор ограничения тока через обмотку реле.
Например, питание +18 В, реле на 12 В сопротивлением 280 Ом. Рабочий ток реле 12 В/280 Ом = 43 мА.
Погасить надо 18В − 12В − 2В (падение напряжения на открытом TL431) = 4 Вольта.
4 В / 43 мА = 100 Ом. Мощность резистора 43 мА х 4 В = 170 мВт, т. е. нужен резистор от 0,25 Вт и выше. На плате этот резистор «стоит», это сделано, чтобы можно было ставить резисторы разных габаритов и с запасом по мощности до 2 Вт.

Все диоды, кроме шунтирующего обмотку реле, практически любые маломощные, надо только не забыть, что маркировка полоской на корпусе диодов КД522 и других советских, обратная импортной маркировке.

При проблемах в работе, в первую очередь надо проверить правильность установки деталей, особенно диодов, транзисторов и TL431. Затем проверить качество паек (у меня плохо паялись выводы диодов), для этого надо хорошо промыть плату и осмотреть пайки с лупой (или с хорошим глазом).
Затем проверить режимы по постоянному току, напряжения на базах транзисторов должны соответствовать указанным на схеме ± 0,1 В.

Поскольку среди начинающих любителей есть страсть к гигантомании и усилителям мощностью в сотни Ватт и с напряжением питания усилителей порядка ± 50 В, надо помнить, что чем больше мощность усилителя, тем большие токи протекают через контакты реле, при высоких напряжениях возрастает вероятность возникновения дуги между разомкнутыми контактами реле.

В этом случае на данной плате может быть установлено любое реле с одной группой контактов, это реле будет промежуточным и управлять другим, более мощным реле с контактами, рассчитанными на бОльший ток и с увеличенным расстоянием между разомкнутыми контактами. К этому мощному реле можно будет подвести провода бОльшего сечения.

Универсальность данного узла защиты со «своим» питанием и в том, что его можно подключить к выходам мостового (как правило, повышенной мощности) усилителя. Общий провод соединяют не с общим проводом усилителя, а с одним выходом усилителя, а один вход узла защиты со вторым выходом мостового усилителя.

При установке узла защиты в готовую конструкцию, надобность в отдельном блоке питания отпадает (для обычного, не мостового усилителя).

Итого

Я сделал два экземпляра - с обычными резисторами и SMD, плата позволяет это сделать. Впечатления от устройств очень хорошие. Длину платы можно уменьшить на 1…2 см, особенно с резисторами SMD, но я предпочитаю широкие дорожки, позволяющие неоднократно перепаивать детали и прощающие смещения при сверлении отверстий; достаточные промежутки между дорожками.


Не надо забывать, что подобное устройство защищает только НЧ-головки от постоянных напряжений и все головки от переходных процессов в усилителе, в том числе при выходе усилителей из строя и не защищает ВЧ-головки при перегрузках и возбуждении усилителей. Вместе с тем, данное схемное решение позволяет подключать датчики перегрева, ограничения (клиппирования), возбуждения для сохранности всех головок АС.

Кроме того (что используется в ряде усилителей) можно управлять подключением к выходу усилителя одной или несколькими пар АС с помощью переключателя на лицевой панели усилителя, при этом не надо пропускать сильноточные сигнальные цепи через данный переключатель.

Защита акустических систем (АС) просто необходима, и если ее не использовать, то можно лишиться своей акустики из-за неисправности усилителя НЧ. Существует множество схем обеспечивающих защиту АС. В этой статье представлена рабочая, проверенная временем и любителями звука схема, которая представляет приближенную копию защиты акустической системы усилителя БРИГ.

Схема обеспечивает защиту от напряжения постоянного тока на выходе усилителя НЧ (в случае его неисправности), а также обеспечивает задержку подключения АС до тех пор, пока не закончатся все переходные процессы в усилителе и блоке питания. Без такой задержки, при включении усилителя в сеть, в АС слышны щелчки, хлопки, звон и т.д.

Основные характеристики защиты акустической системы

Напряжение питания постоянным током от +27В до +65В.

Время задержки подключения АС от 1 секунды до 3 секунд.

Чувствительность по напряжению постоянного тока на входе защиты ±1,5В.

Схема защиты акустической системы

На элементах VD5, VD6, VT5, R13 собран стабилизатор напряжения, который обеспечивает широкий диапазон питающих напряжений. На VT5 необходимо установить небольшой радиатор. Диоды VD3 и VD4 необходимы для исключения помех от самоиндукции обмотки реле во время коммутации. Транзисторы VT3, VT4 являются управляющими для обмоток реле K1 и K2. Диоды VD1 и VD2 защищают транзисторы VT1 и VT2 от пробоя, в случае появления на входе схемы отрицательного напряжения. Электролитические конденсаторы C3 и С4 напрямую влияют на время задержки, чем больше емкость, тем больше время.

Элементы схемы

Все резисторы должны быть мощностью 0,25Вт, резистор R13 можно установить на 0,5Вт, особенно при напряжении питания схемы от 40В и выше. Электролитические конденсаторы должны быть рассчитаны на напряжение в полтора раза больше чем напряжение питания схемы (я установил на 63В). Хотя только на C5 присутствует напряжение питания схемы, а на остальных электролитах единицы Вольт.

Вместо BDX53 можно применить BD875, КТ972. Расположение выводов у всех транзисторов разное, поэтому будьте внимательны в случае замены.

Транзистор 2n5551 является очень распространенным и присутствует на многих прилавках, но все же его можно заменить на КТ3102, BC546, BC547, BC548. Расположение выводов также разное.



Универсальный блок защиты АС выполнен на малогабаритных деталях и может быть встроен в любой усилитель, не имеющий подобной защиты. Особенность этого блока - в применении встроенного питания от сети, надёжных электромагнитных реле и светодиодной индикации появления постоянного напряжения на выходе усилителя. Устройство обеспечивает стабильную задержку и защиту даже после кратковременного пропадания сетевого напряжения.

Известно, что при подаче питания на усилитель в акустической системе (АС) может возникнуть громкий щелчок (хлопок). Чтобы устранить это явление, необходимо подключать нагрузку к выходу УМЗЧ с некоторой задержкой, достаточной для завершения всех переходных процессов (обычно 1...3 с) . При отключении же питания АС должна отключиться до момента, когда накопительные конденсаторы фильтра питания усилителя заметно разрядятся (более чем на 20 %). В противном случае процесс выключения тоже может создать неприятные призвуки или щелчки.

Представленный модуль реализует функции бесшумного включения и выключения усилителя (фактически АС), а также позволяет защитить НЧ-головки АС при появлении постоянного напряжения на выходе УМЗЧ, связанного с его аварийной работой или выходом из строя.

Технические характеристики

Напряжение питания, В...........190...264

Напряжение срабатывания защиты, В................0,6...0,7

Время задержки включения/перезапуска, с...........2,5...3

Время срабатывания защиты (U вх = 2 В), с, не более 1,4

Время срабатывания защиты (U вх = 20 В), с, не более 0,25

Время выключения модуля, с, не более..................0,25

Потребляемая мощность, Вт, не более..................2,5

Максимальный коммутируемый ток, А....................12

С реализацией задержки и защиты АС вопросов не возникает. Но как реализовать быстрое отключение АС при пропадании (относительно кратковременном) сетевого напряжения, но дос-таточном для возникновения переходного процесса и щелчка? Есть два разумных варианта: использование информации о наличии переменного напряжения в одной из существующих вторичных обмоток трансформатора, питающего УМЗЧ (как это реализовано в микросхеме μРС1237 ), или использование отдельного трансформатора питания (либо от дополнительной обмотки трансформатора УМЗЧ) для узла защиты. Первый вариант накладывает определённые ограничения, сужая универсальность модуля. Второй же позволяет использовать в питании устройства сглаживающий конденсатор небольшой ёмкости, благодаря чему блок защиты гарантированно отключит АС быстрее, чем разрядятся конденсаторы в блоке питания УМЗЧ.

Очевидно, что второй вариант - более надёжный и простой в реализации,позволяющий подключить модуль практически к любому усилителю. Недостаток такого решения - более высокая стоимость за счёт применения дополнительного блока питания, но универсальность и надёжность здесь превалируют.

Схема устройства показана на рис. 1. Его входы нужно подключать к выходам каналов стереофонического УМЗЧ, а выходы - к нагрузкам (АС) соответствующих каналов. Общий провод модуля, громкоговорителей АС (или кроссовера) подключают к общему проводу усилителя непосредственно.

Рис. 1. Схема устройства

При подаче напряжения питания конденсатор C6 медленно заряжается через резистор R10 до 1,9 В (определяется соотношением сопротивления резисторов R10 и R11), что достаточно для открывания транзистора VT4. Срабатывают реле K1, K2, и нагрузка подключается к усилителю.

При возникновении на любом из входов устройства (контакты Х2а, ХЗа) постоянного напряжения более ±0,6...0,7 В открывается соответствующий транзистор (VT1 - для напряжения плюсовой полярности, VT2 - минусовой полярности), включая излучающий диод оптопары U1 или U2. Освещённый фототранзистор оптопары через резистор R8 разряжает конденсатор С6, и полевой транзистор VT4 закрывается, обесточивая реле. Свечение светодиода HL1 индицирует отключение АС и неисправность УМЗЧ. Резистор R8 ограничивает ток разрядки конденсатора С6, а резисторный делитель R4R5 обеспечивает искусственную среднюю точку питающего напряжения.

Большинство подобных устройств защиты и задержки включения АС имеют неприятный недостаток - отсутствие задержки при рестарте за короткий промежуток времени после отключения питания. Пример такой ситуации - кратковременное пропадание электричества в сети. Этот недостаток не позволяет получить должного уровня защиты АС и всей аппаратуры в целом, где применён такой узел. Для исключения этого недостатка введены элементы R9, С5, VT3. Эта цепь кратковременно срабатывает при пропадании и появлении напряжения питания, разряжая конденсатор С6, что и обеспечивает нормальный последующий старт узла защиты. Применение полевого транзистора VT4 с пониженным напряжением открывания (примерно 1,5 В) обеспечивает меньшее напряжение заряда С6, причём время рестарта практически равно времени первого включения. При сохранении постоянных времени зарядки-разрядки конденсатора С6 его ёмкость можно существенно уменьшить, соответственно увеличив сопротивление резисторов R8-R11. Ёмкость конденсатора С1 увеличивать не рекомендуется - она определяет скорость выключения блока защиты.

При номинальном сетевом напряжении 230 В и комнатной температуре 25 о С стабилизатор DA1 нагревается до 50...52 о С. При проверке на максимальном переменном напряжении 274 В (ограничено возможностями ЛАТРа) нагрев стабилизатора составил 64...65 о С - всё в пределах нормы. Если исключить резистор R1, то нижняя допустимая граница питания блока упадёт до 170 В, но при этом увеличится нагрев DA1 в среднем на 10...12 о С. Понятно, что это изменение целесообразно лишь для местности, где напряжение в сети всегда ниже номинального.

Если представить себе ситуацию, когда оба канала УМЗЧ выходят из строя, и в первом канале на выходе образуется напряжение одной полярности, а на втором - обратной полярности, равное по модулю напряжению на выходе первого канала (с разницей менее 0,6...0,7 В), то после суммирования через резисторы R2 и R3 получится напряжение, которого недостаточно для открывания транзистора VT1 или VT2. То есть система защиты не сработает, и это является недостатком (его можно преодолеть изменением сопротивления одного из этих резисторов на ±10 %). Но вероятность такого события пренебрежимо мала и является скорее примером гипотетического моделирования отказа.

Печатная плата (рис. 2), имеющая размеры 66x45 мм, выполнена на фольгированном стеклотекстолите и рассчитана на установку транзисторов в корпусах SOT-23, резисторов типоразмера 0805 (кроме резисторов R1 и R13 - 1206), конденсаторов C2, C5 типоразмера 0805 и диода VD2 в корпусе SMA. На фото рис. 3 показана смонтированная плата со стороны пайки деталей поверхностного монтажа.

Рис. 2. Печатная плата

Рис. 3. Смонтированная плата со стороны пайки деталей поверхностного монтажа

В качестве T1 применён маломощный трансформатор ТПК-2 с вторичной обмоткой на 12 В. Диодный мост может быть любой из серий DB103S-DB107S или MB2S-MB6S, для чего на печатной плате предусмотрены два посадочных места. Диод VD2 - любой с прямым током 1 А и обратным допустимым напряжением не менее 200 В.

Обмотки реле должны быть на ток потребления не более 30 мА (повышенной чувствительности) при напряжении 12 В. Можно было бы использовать одно реле с двумя парами контактов, но автору не удалось найти такого на коммутируемый ток более 8...10 А. Достоинство указанных на схеме реле TRU-12VDC-SB-CL в том, что они имеют на контактах напыление AgCdO (серебро-окись кадмия), устойчивое к механическому износу, и максимальный коммутируемый ток 12 А. Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.

Оптопары U1, U2 можно применить практически любые с соответствующей структурой, например, PS2501, PC817. Светодиод HL1 - любой, желательно красного цвета свечения, например, из серии АЛ307 или иные.

Транзисторы VT1-VT3 могут быть заменены любыми другими маломощными транзисторами соответствующей структуры и типоразмера. Возможно использование MMBT5551, MMBT4401 (VT1, VT3) и MMBT5401, MMBT4403 (VT2).

В качестве замены n-канального полевого транзистора (ПТ) VT4 с низким пороговым напряжением затвора (Gate Threshold Voltage) можно порекомендовать NTR4003N, IRLML2502. Если подобные замены недоступны, то допустимо применить иной n-канальный ПТ с изолированным затвором, ориентируясь на сопротивление открытого канала не более 3...5 Ом, максимальное напряжение сток-исток - не менее 20 В и максимальный ток стока - не менее 300 мА. В этом случае в схему потребуется внести следующие изменения: R8 = 75 Ом, R10 = R11 = 68 кОм, C6 = 47 мкФ на 16 В. Но следует помнить, что время задержки при быстром рестарте немного уменьшится. Так как пороговый уровень включения у различных ПТ может значительно отличаться, то, возможно, потребуется подкорректировать время задержки включения реле подбором пары резисторов R10, R11 из условия их равенства.

Плавкую вставку FU1 можно использовать на ток 0,16 или 0,25 А, например, отечественную ВП4-10 0,2 А, имеющую малые габариты и гибкие выводы для монтажа на плату. Клеммники X1-X3 - серии DG127, XY304 или аналогичные. Как видно из схемы, центральный контакт в X1 не используется. Это сделано для того, чтобы увеличить зазор между проводниками сетевого питания.

Собранное устройство (его фото на рис. 4) не нуждается в налаживании и работает сразу после подачи питания. Его конструкция повторена много раз, и высокая надёжность подтверждена длительной эксплуатацией.

Рис. 4. Собранное устройство

На рис. 5 представлена схема, позволяющая исключить малогабаритный трансформатор. В качестве примера показана упрощённая схема блока питания УМЗЧ с напряжением +/-30 В. При этом немного изменены как схема, так и способ подключения модуля к усилителю.

Рис. 5. Схема, позволяющая исключить малогабаритный трансформатор

Модуль имеет двухполярное питание через гасящие резисторы R8, R9, поэтому формирование искусственной средней точки не требуется (резисторы R4, R5 на рис. 2). Для большей эффективности реле включены последовательно и добавлен конденсатор (C4) в качестве фильтра питания.

На компонентах VD1, R5, C3 выполнен однополупериодный выпрямитель, напряжение с которого подаётся на оптопару U3. В исходном состоянии за счёт резистора R10 транзистор VT3 находится в режиме насыщения, шунтируя конденсатор С5 до тех пор, пока не появится напряжение на излучающем диоде оптопары U3, после чего VT3 закрывается и С5 начинает медленно заряжаться, открывая транзистор VT4. При этом общее время задержки подключения нагрузки достигает 2...2,5 с.

При выключении усилителя конденсатор С3 быстро разряжается, обесточивая оптопару U3. Транзистор VT3 открывается и разряжает конденсатор C5, вследствие чего отключаются реле с нагрузкой. Таким образом, реализуется механизм быстрого выключения с общим временем не более 0,3...0,5 с.

Последующий старт включения происходит с разряженным конденсатором C5, поэтому, в отличие от схемы на рис. 2, его принудительная разрядка не требуется.

В качестве VT4 можно применить n-канальный ПТ с пороговым напряжением открывания 2...5 В и максимальным током стока не менее 1 А, например, IRF510-IRF540, IRF610-IRF640. Выпрямительный диод VD1 - любой с обратным напряжением не менее 100 В и прямым током от 100 мА: SF12-SF16, 1 N4002-1N4007 и пр. При использовании реле с обмотками, потребляющими ток 50 мА, необходимо изменить номиналы резисторов R8, R9 на 330 Ом.

Примечание: Для повышения надёжности работы между базой и эмиттером транзистора VT3 (рис. 1) надо установить резистор сопротивлением 50...100 кОм.

Литература

1. Атаев Д. И., Болотников В. А. Функциональные узлы усилителей высококачественного звуковоспроизведения. - М.: Радио и связь, 1989, с. 120.

2. UPC1237. Protector IC for stereo power amplifier. - URL: http://www.unisonic.com. tw/datasheet/UPCI 237.pdf (21.03.16).


Дата публикации: 10.07.2016

Мнения читателей
  • Rymkin / 05.02.2019 - 03:06
    Здравствуйте! Можно ли применить трансформатор на 15 вольт? В статье опечатка,"Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.", на самом деле марка реле SRD (T73) 12VDС-SL-С.

Не мечтай, действуй!



Усилители мощности звуковой частоты с непосредственной связью представляют опасность для акустических систем. Почти все отказы внутренних компонентов усилителя приводят к значительному (по законам Мерфи, до напряжения питания) смещению на выходе. В результате дорогостоящие акустические системы могут выйти из строя, и было бы опрометчивым не снабдить усилитель схемой защиты, отключающей нагрузку при появлении на выходе усилителя постоянного потенциала. Защита должна срабатывать при превышении постоянного потенциала на выходе усилителя ±1,5 В, либо появления низкочастотных колебаний частотой ниже 2…3 Гц.
Практика показывает, что необходимо использовать простые и надежные схемы защиты акустических систем на основе электромагнитных реле.

Схема защиты акустических систем усилителя «Бриг-001»

На рис. 1 показана проверенная временем схема защиты акустических систем от постоянного смещения усилителя «Бриг-001». Вход схемы защиты присоединен к выходу усилителя мощности, а выход усилителя соединяется с нормально разомкнутыми контактами реле К1. После подачи питания на схему защиты, через некоторое время, определяемое постоянной времени R6, C2, составная пара транзисторов VT2, VT3 открываются, реле К1 срабатывает, и своими контактами соединяет выход усилителя с акустическими системами. Задержка включения позволяет устранить переходные процессы в усилителе в момент включения, воспринимаемые как неприятные на слух хлопки, разрушительные для акустических систем.


Рис. 1. Схема защиты акустических систем усилителя «Бриг-001»

При появлении на выходе усилителя любого из каналов постоянного напряжения положительной полярности открывается транзистор VT1, который шунтирует цепь базы составного транзистора на общий провод. При этом ток через реле К1 уменьшается настолько, что оно отпускает контакты и отключает акустические системы от усилителя. Конденсатор С1 предотвращает срабатывание реле К1 от переменного напряжения выходного сигнала.
В случае, если на выходе усилителя появится напряжение отрицательной полярности, оно поступит через делитель R6, R7 на базу составного транзистора, в результате реле К1 отпустит и отключит нагрузку от усилителя.

Случай появления на выходах усилителя равных по модулю двухполярных напряжений учтен выбором различных значений резисторов R1 и R2.
Таким образом, акустическая система защищена от постоянного напряжения любой полярности на выходе усилителя.

Подобная схема защиты акустических систем проработала в одном из моих усилителей более двух десятков лет, и ни разу не подвела, хотя около половины указанного срока усилитель трудился на увеселительных мероприятиях.


Предлагаемое устройство может быть использовано как для настоящего проекта, так и для самостоятельного конструирования усилителей звуковых частот.

Достоинства:
простота и надежность;
практически полное отсутствие ложных срабатываний;
универсальность применения.

Недостатки:
Отсутствует схема отключения акустических систем при пропадании питания.
Этот недостаток был принесен в угоду простоте и надежности устройства.

В схеме защиты установлены пассивные инфразвуковые фильтры нижних частот второго порядка (соответственно C3, C5, R10, R12 и C4, C6, R11, R13) и сенсоры аварийного постоянного напряжения на выходе усилителя (VT2, VT4, VT6 и VT3, VT5, VT7). При напряжении любой полярности более 1,5 В открывается соответствующий ключ (VT2 или VT3 для положительной полярности постоянного напряжения и VT4, VT6 или VT5, VT7 – отрицательной). При аварии база составного транзистора VT8, управляющего последовательно включенными электромагнитным реле К1 и К2, через низкоомный антизвоновый резистор R5 надежно соединяется с общим проводом, размыкая соединение выходов акустических систем через контакты реле.

Интегрирующая цепь R1, C2 в базовой цепи транзистора VT1 обеспечивает задержку подключения акустических систем при включении питания (на время 1,8 с), тем самым предотвращается проникновение в акустическую систему помех, вызванных переходными процессами в усилителе.
Схема защиты универсальна и может использоваться с другими УМЗЧ. В таблице, размещенной в правом верхнем углу схемы рис. 5 указаны номиналы R6, R7, которые необходимо изменить в соответствии с напряжением питания Uп усилителя.

Технические характеристики:
Напряжение питания, В=+25...45
Время задержки включения, с=1,8
Порог срабатывания защиты, В=более ±1,5
Выходной ток для питания реле, мА=до 100
Размеры печатной платы, мм=75х75

Детали модернизированной схемы устройства защиты акустических систем.

VT1…VT3, VT6, VT7 – Транзистор BC546B (ТО-92) – 5 шт.,
VT4, VT5 – Транзистор BC556B – 2 шт.,
VT8 – Транзистор КТ972А – 1 шт.,
VD1 - Стабилитрон КС212Ж (BZX55C12, 12V/0,5W, корпус DO-35) – 1 шт.,
VD2 - Диод 1N4004 – 1 шт.,
K1, К2 - Реле электромеханическое (1C, 12VDC, 30mA, 400R) BS-115C-12A-12VDC – 2 шт.,
R1 - Рез.-0,25-220 кОм (красный, красный, желтый, золотистый) – 1 шт.,
R2 - Рез.-0,25-1 м (коричневый, черный, зеленый, золотистый) – 1 шт.,
R3, R4 - Рез.-0,25-11 кОм (коричневый, коричневый, оранжевый, золотистый) – 2 шт.,
R5 - Рез.-0,25-10 Ом (коричневый, черный, черный, золотистый) – 1 шт.,
R6 - Рез.-0,25-2,2 кОм (красный, красный, красный, золотистый) – 1 шт.,
R7 – Перемычка,
R8…R11 - Рез.-0,25-22 кОм (красный, красный, оранжевый, золотистый) – 4 шт.,
R12, R13 - Рез.-1-22 кОм (красный, красный, оранжевый, золотистый) – 2 шт.,
C1, C2 - Конд.47/25V 0511 +105 °С – 2 шт.,
C3 – C6 - Конд.47/50V 1021 NPL (47/25V 1012 NPL) – 4 шт.,
Клеммник 2к шаг 5мм на плату TB-01A – 5 шт.


После окончания сборки не торопитесь включать устройство, а займитесь проверкой монтажа в соответствии со схемой (рис. 6). При этом особое внимание обратите на отсутствие перемычек между токоведущими дорожками, холодных паек (недостаточное пропаивание контакта элемента с печатной платой). Если таковые имеются, удалите их с помощью паяльника. Проверьте правильность установки полярных электролитических конденсаторов, транзисторов, диода и стабилитрона.
Внешний вид устройства защиты акустических систем, собранного племянником Алексеем, показан в аннотации статьи. У меня работает промежуточный вариант устройства защиты с реле РЭС22.
Для обрезки и снятия изоляции с проводов (кабелей) лучше воспользоваться специальным инструментом (рис. 9).


Рис. 9. Клещи для зачистки провода и обжима наконечников – помощник при монтаже усилителя

Включаем!

Первое включение всегда показательно. Включаю усилитель, слышен щелчок сработавших реле устройства защиты, дальше тишина. Хотя все узлы «гонял» по отдельности, еще раз измеряю напряжения питания и нули на выходах: все в порядке.
Отвлекаюсь на дела и только через полчаса начинаю прослушивание. Звучит усилитель хорошо, отдавая в нагрузку сопротивлением 6 Ом около 20 Вт.
Работает чисто и прозрачно, доставляя удовольствие от прослушивания. Однако не следует забывать, что усилитель на представляет собой систему начального уровня (лучшее из простого) и есть куда расти и развиваться.

Еще раз напомню, что вместо можно применить и ; при этом напряжение питания двухполярного источника должно составлять ±22 В для , ±16 В для , и ±12 В для TDA2006.

Настоятельно советую повторить этот проект всем желающим, чтобы приобрести опыт и построить неплохой усилитель для радиокомплекса. Не случайно девизом проекта я выбрал слоган «Не мечтай, действуй!» .



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...