Бюджетная фреонка: миф или реальность?! Конструируем систему охлаждения компьютера.

Экстремальное охлаждение... Низкие и сверхнизкие температуры... Умопомрачительный разгон процессора или видеокарты.. Мировые рекорды..
Кто из оверклокеров не мечтал об этих вещах, которые когда-то были удовольствием неординарным и дорогим. Сегодня же ситуация меняется - в интернете много информации на тему самодельных систем фазового перехода, и, при наличии желания и умения создать свою, личную, пусть даже по типичной схеме, пусть не самую производительную, но намного более дешевую "фреонку" может каждый, кто действительно этого захочет. Сегодняшний материал - яркий тому пример, достойный внимания и уважения!

Структура статьи такова:

1. Введение
2. Компоненты системы
3. Сборка системы
4. Вакуумирование и заправка
5. Практическая проверка самодельной системы фазового перехода
6. Тестирование системы, анализ результатов
7. Заключение

Введение

Фреонка! Как много в этом слове (особенно для знающих людей;))!
Уже несколько лет системы фазового перехода будоражат умы оверклокеров. Это - заветная мечта любого, ведь она позволяет открыть новые, доселе неведомые горизонты разгона. Сейчас ни один новый мировой рекорд по разгону компьютерных комплектующих не обходится как минимум без применения фреонки.
Несмотря на свою долгую историю, системы охлаждения на основе фазового перехода так и не стали массовыми. Причин тому есть великое множество. Так, если говорить о самодельных вариантах, то кого-то отталкивает сложность сборки, кого-то пугает конденсат и другие сложности в процессе эксплуатации. Немаловажным сдерживающим фактором является высокая цена, ведь стоимость серийных фреонок находится у отметки «1000 у.е», что для рядового оверклокера из постсоветского пространства - немыслимые деньги за охлаждение. Самоделки же, хоть и стоят в 3-4 раза дешевле, но все равно донедавна были уделом преимущественно обеспеченных людей и истинных фанатов разгона.
В данном материале я расскажу Вам, как собрать Систему Фазового Перехода своими руками и при этом потратить сумму, эквивалентную стоимости серийной СВО.

Компоненты системы

Приступим.
Основным донором для нашей фреонки станет старый кондиционер производства Бакинского завода. Вот так он выглядит:

…а вот его технические характеристики:

В кондиционере присутствует отдельная линия для охлаждения масла:

Пробный запуск показал полную работоспособность данного девайса. За несколько минут температура на испарителе опустилась до -7С:

Компрессор

Модель БК-2000 использует самый производительный из используемых в данных кондиционерах компрессоров. Это - среднетемпературный роторный ХГрВ 2,2-У2 мощностью 1100 Вт +5С (В БК-1800 и ниже используют ХГрВ 1,75-У2). Для всех кондиционеров БК родным является газ R22. Охарактеризовать данный компрессор можно так:

1. Огромная потребляющая мощность, - при запуске в квартире иногда мигает свет. Так что включать данный девайс одновременно с утюгами/чайниками противопоказано.

2. Шум. Производителем заявлено 60 Дб. О спокойной работе в таких условиях можно и не мечтать

3. Ощутимый нагрев компрессора во время длительной работы. Из-за этого в нём организована отдельная ветка для охлаждения масла. Напомню, что для роторных и поршневых компрессором немного различаются температурный порог для безболезненной работы, так для поршневых компрессоров - он находится в пределах 60-70 , а для роторного - 150-160 С.

Конденсатор

Конденсатор оставляем родной, чтоб не возиться с переделыванием линии охлаждения масла. Испаритель же отрезаем, промываем и сушим (он нам еще пригодится для будущих проектов;)).

Фильтр-осушитель и клапаны Шредера

Покупаем самый большой фильтр, так как компрессор старый, и наверняка внутри него собралось много различного мусора. Так как мы берём по минимуму, то вполне можно обойтись одним клапаном Шредера для заправки и вакуумирования:

Испаритель

Он был изготовлен на заводе, из медного цилиндра диаметром 50 мм и высотой 60 мм. Имеет 4 этажа c лабиринтами, по центру просверлено отверстие диаметром 2,5 мм - для капилляра. К сожалению, меди не осталось, и штуцер пришлось изготовить из латуни:

Вот он в разобранном состоянии:

Труборез

Можно обойтись и без него, используя ножовку, но, увы, она оставляет много стружки и заусениц, которые могут забить капилляр. Да и с труборезом намного легче управляться, разрез аккуратнее и его можно использовать в труднодоступных местах. Поэтому я и купил самый дешевый труборез:

Сделаю акцент на одной его особенности: он имеет пластмассовую рукоятку, которая от постоянной нагрузки очень быстро лопается. У меня она долго не выдержала, и, как достойная альтернатива, была использована ручка от маминого агрегата для консервации

Поэтому если не хотите лишних хлопот – будьте бдительны, и покупайте труборезы только с металлическими ручками.

Капилляр

Самым распространённым и используемым является капилляр диаметром 0,7-0,8 мм, но, увы, купить его в моём городе оказалось непосильной задачей. Обойдя все магазины, торгующие холодильной техникой, я смог найти только 0,9 мм. Задача расчета длины капилляра всегда индивидуальна, обычно для этого используют таблицу Гарри Ллойда, но, увы, в ней присутствуют только капилляры с диаметром 0,7 и 0,8 мм. Обратившись со своей проблемой в ветку «Немного экстрима или фреонка своими руками - 2» на форуме overclockers.ru, я получил в своё распоряжение программу "hlad 0.3.1", с помощью которой можно рассчитать необходимую длину капилляра.
Так как в базе данных моего компрессора нет, то основные данные были введены вручную. За объем прокачиваемого газа было взято 2,2 м3/ч. При температуре конденсации 50, и температуре кипения -30 градусов длина капилляра составила 4,1 м.

Отсасывающая трубка

Рассмотрим все возможные её вариации:

1. Медная трубка. Самый дешевый и надёжный вариант. Но есть один существенный минус - из-за плохой гибкости с ней трудно обеспечить хороший прижим испарителя к процессору.

2. Металлический заправочный шланг REFCO , идеальный вариант. Hесмотря на дороговизну, его преимущества налицо. Очень гибкий, длинный, удобный. Но найти его в продаже даже в Москве - задача весьма серьезная.

3. Желтый газовый шланг . Очень схож по свойствам с заправочным REFCO, это делает его выбором номер 2. Но имеет один существенный недостаток, - при минусовых температурах длина увеличивается на 20-30%.

4. Медная гофрированная трубка , используется при установке кондиционеров, ею заменяют медные трубки в местах крутых изгибов, где медь попросту ломается.

Самым доступным по цене является последний вариант. Найти эту трубку можно в магазинах, которые торгуют газовым либо холодильным оборудованием.

Горелка

Это, пожалуй, самый дорогой и важный инструмент, участвующий в нашей сборке. От неё зависит качество пайки и состояние нервной системы того, кто самостоятельно делает систему фазового перехода. Исходя из финансовой стороны Вашего проекта, можно из нижеприведенного списка выбрать агрегат себе по карману.

1. МАПП газ и горелка под него. Имеет температуру горения 1300 градусов цельсия, обладает достаточной мощностью для пайки трубок. Спаять испаритель им тоже возможно, но для этого объект пайки потребуется дополнительно разогревать на плите.
Цена:
горелка – в среднем 35 у.е, баллон – 12 у.е

2. Турбо-пропан. Состоит из специальной горелки и пропанового баллона. Неплохой вариант, имеет достаточную температуру горения для прогрева испарителя, но если испаритель достаточно массивный, опять же придется прибегнуть к помощи плиты. Цена горелки порядка 40 у.е.

3. Пропан-кислород.
Вот этой действительно «выбор джедая». С помощью этой горелки вы сможете паять всё - от ювелирной пайки маленьких деталей и швов до тяжелых и габаритных испарителей, конденсаторов и т.д.

Здесь я решил не экономить и взять по максимуму. Осмотр цен на готовые пропано-кислородные системы поверг меня в шок, за переносную горелку с пропановым баллоном на 5 л и 1 л кислородным, требовали от 120 до 140 у.е. Единственный выход - собирать самому по деталям. На барахолке были куплены: баллон от сжатого воздуха (6 у.е) на 1 литр, и 5-тилитровый пропановый (8 у.е). Баллон для сжатого воздуха был доставлен на заправочную станцию, где его освидетельствовали, перекрасили и заправили. Горелку я купил новую, из-за мизерной разницы в цене между б/у (10 у.е) и этой (14 у.е). Новый кислородный редуктор затянул на 18 у.е, а пропановый на 4 у.е. Ну и в довесок ко всему этому пришлось взять по 2 метра шлангов. В итоге получилась вот такая горелочка, общей стоимостью 50 у.е.:

Трубки

Изначально я не знал, трубки какого именно диаметра мне понадобятся, поэтому про запас взял по метру 6 мм, 8 мм, 10 мм и 12 мм:

Изоляция

Трубчатая изоляция представлена в любом магазине в широком ассортименте, а вот с листовой (для изоляция материнской платы) всё намного хуже. Купить её у нас в основном можно только заранее заказав, примерно по таким расценкам: за 1 квадратный метр толщиной 10 мм просят 16 у.е., а за столько же толщиной 25 мм - 34 у.е.
Поэтому было приобретено 2 метра обычного круглого K-Flex (15 мм - внутренний, 36 мм - внешний) для изоляции трубок:

А для изоляции материнской платы я купил трубчатую, но большого диаметра (10 см), и с толщиной стенки 15 мм. Преимущество её в том, что стенки тут достаточно толстые, и при разрезе из неё получается превосходная плоская изоляция:

Фреон

Для заправки системы у холодильщиков был куплен один литровый баллон фреона Р-22.

Заправочный шланг, манометры

Так как манометрическую станцию я не могу себе позволить, придется ограничиться заправочным шлангом.

Припой

Все детали в системе паялись 5% Харрисом. 3-х прутков с лихвой хватит для спайки всего контура и испарителя.

Сборка системы

Сперва я решил спаять испаритель. Так как это - один из важнейших элементов системы, то качество его пайки должно быть на высоте. За несколько минут горелка разогрела испаритель докрасна, и я нежно прошёлся прутком по соединениям. Припой очень быстро и легко заполнял все стыки, расползаясь по сторонам и порывая весь испаритель.
Чтобы проверить качество пайки, нужно опрессовать испаритель. Для этого впаиваем в него клапан Шредера (предварительно не забудьте выкрутить ниппель), надуваем фреоном и опускаем в ведро с водой. С первого же раза всё спаялось удачно и течей обнаружено не было.

После пайки на меди образуется толстый слой окалины, и не только снаружи, но и внутри, поэтому для безотказной работы его необходимо удалить.

Сделать это можно несколькими способами:

1. Промыть испаритель в концентрированной соляной или азотной кислоте.
2. Проварить испаритель в Coca-Cola.
3. Проварить его в растворе уксусной кислоты.

Вот так выглядел мой испариетль сразу после пайки...

А вот так - уже после процедуры очистки:

Через полчаса испаритель был чист, и я приступил к пайке отсасывающей трубки. Капилляр установился достаточно плотно, и я отрегулировал его так, чтобы он не доставал до дна 5-6 мм, и начал припаивать отсасывающую трубку. Правда, штуцер был из латуни, поэтому припой не «натекал» не него, и мне пришлось опять идти к холодильщикам, на этот раз за флюсом. С ним всё пошло как по маслу:

Пайка остальных деталей прошла быстро и без эксцессов.

Учтите, что фильтр нужно располагать под углом, чтобы фреон лучше стекал. Когда всё уже спаяно, полезно проверить систему на течи. Для этого заправляем ее небольшим количеством фреона и промазываем всё стыки мыльным раствором. Для большей надёжности я оставил систему с фреоном на двое суток. Через указанное время было установлено, что фреон всё еще был внутри и выходил с одинаковой интенсивностью.

Из-за горячего нрава данного компрессора для его охлаждения я решил использовать высокооборотистые советские вентиляторы типа ВН-2 общим количеством 4 штуки:

Одна пара втягивала воздух через конденсатор, другая же наоборот продувала его:

Вакуумирование и заправка

В домашних условиях самым доступным способом вакуумирования является использование в качестве вакуумного насоса старого компрессора. Но, увы, такового у меня не оказалось, поэтому я опять обратился к холодильщикам, и они с помощью вакуумного насоса REFCO за несколько минут откачали весь воздух из системы до глубокого вакуума.
Из-за большого размера конденсатора и наличия в системе ресивера, объем закачиваемого фреона достаточно велик (порядка 1 кг). В обычных фреонках этот число колеблется в переделах 300-400 грамм.
Ну что же - включаем систему, подсоединяем заправочный шланг, приоткрывая кран на баллоне на 4-6 секунд. После каждой «порции» подачи газа ждём 3-5 минут, и снова добавляем фреона. Когда испаритель начнет обмерзать, добавляем еще немного и прекращаем заправку.
Через 10-15 минут на испарителе у меня начала появляется иней, уже к 30 минуте отсасывающая трубка промерзла на 10-15 см от испарителя, а температура опустилась до «-47».

Что ж, отличный результат! Посмотрим, что будет с изоляцией. Заизолировать отсасывающую трубку особого труда не вызвало.

Включаем… и система за 15 минут выходит на -67!

Потрясающий результат. Правда, мы должны учесть несколько факторов.

1. Для работы под нагрузкой придется добавить фреона, соответственно температура повысится.
2. Мультиметр в роли термометра далеко не лучший вариант, уже после -50 он начинает местами неплохо врать, поэтому о реальной температуре мы может только догадываться. Но сам факт достижения значения «-67» очень греет душу.

Практическая проверка самодельной системы фазового перехода

Этап подготовительный - изоляция материнской платы

К изоляции материнской платы нужно подойти со всей ответственностью, ведь даже маленькая капля конденсата может привести к нестабильности в работе, а иногда и к выходу системы из строя.
Аккуратно замеряем расположение конденсаторов и прочих элементов на плате, и вырезаем под них отверстия в изоляции (в качестве последней используем разрезанную трубчатую изоляцию, о которой говорилось выше).
Вот фото прижимной пластины из оргстекла, для плотного прилегания изоляции по всей площади контакта с материнской платой:

Для изоляции околосокетной зоны не использовалась никакая диэлектрическая смазка – это оказалось ненужным, ведь у меня и так получилась стабильно работающая система.

Конденсаторы тоже были заизолированы, ведь они находятся очень близко к процессорному разъему. Из-за установленного испарителя во время работы они довольно «неплохо» промерзали и покрывались инеем.

Крепление для испарителя было сделано из 15 мм фанеры, так как она, в отличие от оргстекла, спокойно держит температуры порядка -50 градусов Цельсия и ниже, тогда как 15 мм оргстекло в таких условиях промерзает насквозь.

Дальнейшая проверка включенной системы показала полное отсутствие конденсата.

Испытание на железе

Из-за жесткости отсасывающей трубки было потрачено два дня на доработку крепления, так как изначально не было плотного контакта испарителя и процессора. После долгих мучений у меня всё-таки получилось обеспечить нормальный прижим испарителя к процессору.

Не смотря на то, что основание испарителя отшлифовано «на коленке» с помощью пасты ГОИ и мелкой наждачной бумаги, как видите, добиться зеркального отражения довольно легко.
Для обдува околосокетной зоны и перестраховки против возникновения конденсата использовался агрессивный 120-мм вентилятор:

Сначала меня немного беспокоила вибрация, которая отчетливо передавалась во все стороны по полу на расстоянии 3-х метров от собранной системы, ну и, конечно, немного трясло испаритель. Правда, на стабильность это ни коим образом не повлияло, поэтому испытания проходили в режиме «чем богаты, тем и рады».

Ну что же нам делать с системой фазового перехода? Конечно, применять для разгона компонентов системы! Теперь стабильной для процессора стала частота 3050Мгц:

Вот так выглядела собранная система в рабочем состоянии, на фото – меряем датчиком температуру испарителя при проходе 3DMark01:

В тестах типа 3DMark01, SuperPI, SienceMark, RenderBench и так далее температура испарителя держалась в пределах -35 градусов, при более тяжелых нагрузках (типа s&m) она поднималась примерно до нуля.

Процессор попался средненький, поэтому из него получилось выжать только Russian Record (WR равен 3207Мгц). А жаль, ведь до мирового не хватило всего 29 МГц! 3178 МГц - предельная частота для моего процессора, при которой сохранялась какая-то стабильность в данных условиях:

Тестирование системы, анализ результатов

Конфигурация тестового стенда:

  • Процессор: АMD Athlon 64 3000+, 2.0 GHz, 1.40 V, 512 Kb (Venice, E6);
  • Материнская плата: DFI LP UT nForce3 250Gb;
  • Подводя итог по тестовой части, следует отметить вполне закономерный рост производительности системы в зависимости от частоты центрального процессора, который можно изобразить с помощью линейного графика.
    Может, для повседневного использования именно с этой фреонкой именно этой системы не так и много, но в бенчерских целях ничего лучше не придумаешь!

    Заключение

    Для начала - подведем итоги по стоимости самодельной системы фазового перехода в моем случае:

    • кондиционер - 30 у.е
    • фильтр - 3 у.е
    • клапан Шредера - 1 у.е
    • испаритель - 15 у.е
    • труборез - 6 у.е
    • капилляр - 8 у.е
    • трубки - 8 у.е
    • горелка - 50 у.е
    • заправочный шланг – 8 у.е
    • фреон - 6 у.е
    • изоляция - 8 у.е
    • припой - 3 у.е

    всего: 144 у.е.

    Фактически за сумму, равную стоимости хорошей покупной системы водяного охлаждения, можно получить отличный инструмент, который намного больше, нежели СВО, поможет любому оверклокеру в битве за рекорды.
    Правда, есть у медали и вторая сторона.

    Для комплексной оценки проведенной работы и полученного результата можно выделить следующие основные моменты:

    плюсы -

    • дешевизна;
    • возможность получать сверхнизкие температуры на процессоре, благодаря чему достичь новых высот при разгоне;
    • моральное удовлетворение от проделанной работы;)

    минусы -

    • огромное энергопотребление;
    • большое тепловыделение (правда, зимой этот минус превратится в неплохой плюс:));
    • вибрация всей системы в целом и испарителя в частности (присутствует в конкретном случае только из-за особенностей примененного компрессора);
    • слишком большой для нормальной работы шум системы.

    Да, эту систему фазового перехода из-за перечисленных отрицательных черт нельзя использовать при работе за компьютером на протяжении длительного времени. Тем не менее, результатом лично я остался очень доволен - масса удовольствия от процесса работы и результата и возможность поработать на экстремальных частотах этого стоят!
    Ну и не стоит забывать, что это - первый опыт в построении самодельной фреонки, который, безусловно, удался!

    Желаю всем удачи и низких температур!

    У Вас есть пожелания, критические замечания по данному материалу? Его обсуждение ведется .


Оверклокинг - в одном этом слове заключено очень многое. Под ним можно подразумевать увеличение производительности для повседневного использования, кратковременное максимально возможное увеличение быстродействия, бенчмаркинг, улучшение температурных показателей комплектующих и многое другое. Тенденция такова, что производители (имеются в виду производители аксессуаров для оверклокеров) стараются выпускать для каждого из направлений узкоспециализированные комплектующие. Разница наиболее заметна в системах охлаждения: воздушные, водяные, с элементами Пельтье. При этом истинно универсальных продуктов, которые могли бы использоваться одновременно, например, как для повседневного использования, так и для бенчмаркинга, очень мало. Впрочем, о причинах апгрейда компьютерного охлаждения я еще скажу пару слов чуть позже.

Почему фреонка?

Для примера возьмем один из наиболее универсальных продуктов на сегодня - Scythe Infinity . Это огромных размеров суперкулер, совмещающий в себе как достаточную производительность в пассивном режиме, так и рекордные показатели при должном обдуве всей конструкции с помощью нескольких 120-мм вентиляторов. Но из-за их использования неизбежно возникает шум и в кулере накапливается много пыли. Допустим, мы приобрели систему водяного охлаждения. При грамотном подходе к выбору комплектующих от СВО можно получить намного большую эффективность с минимальным уровнем шума. Пыль на радиаторе не так остро сказывается на тепловых показателях процессоров и не оседает непосредственно на печатных платах компонентов, оказывая влияние на стабильность. Обычный пользователь годами может довольствоваться СВО, но так как в последнее время бенчмаркинг набирает популярность, наверняка среднестатистический оверклокер тоже попадет под это влияние.

Но проблема в том, что при экстремальном разгоне на водяном охлаждении получить более-менее приличные результаты невозможно. Конечно, выходы для уменьшения температуры на теплообменниках есть - можно добавить в расширительный бачок сухого льда или включить компоненты СВО в состав ватерчиллера, установить модуль Пельтье. Но практически все современные ватерблоки не приспособлены для использования с температурой хладагента ниже нуля. В силу популярности моддинга в них повсеместно используется резина, оргстекло и пластмасса. Эти материалы после нескольких бенч-сессий дают течь, трескаются. Допустим, вы заменили их более простыми и надежными (SilentChill, Waterworker - примеров много), с трудом достали силиконовые шланги, которые, в отличие от популярных пищевых трубок, не становятся полностью "деревянными". Преодолена еще одна ступень усовершенствования системы охлаждения ПК, но и у нее есть свои очевидные минусы, самый значительный из которых - относительно большие теплопритоки. В отличие от DirectDie-фреонок, хладагент в ватерчиллерах преодолевает долгий путь, неизбежно теряя холод. Из-за этого обладатель такого охлаждения вполне может осознать "нерациаонльность" его использования. Рассчитывая получить максимальную производительность, он получает лишь множество мелких, неприятных в повседневном использовании проблем. После этого остается только пользоваться системой, именуемой в простонародье фреонкой.

Принцип ее работы - очень объемный материал, достойный отдельной статьи. Если вкратце - она работает так же, как холодильник. Холод образуется вследствие того, что компрессор гоняет фреон по контуру. Из компрессора хладагент в газообразном состоянии попадает в конденсатор. Там он превращается в жидкость, после чего проходит через фильтр-осушитель в капилляр, который ведет к испарителю. На этом пути, из-за низкого давления, фреон начинает кипеть при минусовой температуре и по обратной линии попадает в компрессор уже в газообразном состоянии. Вот почему такое название - система фреонового охлаждения на основе фазового перехода. Она является полностью закрытой и не требует обслуживания или какой-либо подстройки. Об остальных плюсах и минусах такой системы и непосредственно об Asetek VapoChill LightSpeed поговорим в процессе обзора.

Цены

Отдельно о неприятном - о ценах. К сожалению, официальный дистрибьютор в Украине только один, а именно компания Nebesa . Используя свое эксклюзивное положение, он доводит цены до 1000 долларов за версию с панелями из полированного алюминия и 1050 долларов за черный цвет корпуса. Теоретически мы должны говорить "спасибо" Asetek за то, что в стандартной комплектации нет покраски, якобы пользователю предоставляется возможность не переплачивать, а приобрести в последующем панели нужного цвета (выбор невелик: черный, красный и синий) в официальном интернет-магазине компании за 140 долларов.

Там же можно купить эти же VapoChill LS по цене 906 и 977 долларов. Но в стоимость не входит доставка. А это 49 долларов и максимум 11 дней ожидания посылки. Непонятным является факт существования отдельных моделей для рынка США. На сайте указано только одно отличие, а именно - рабочее напряжение 115 вольт. При этом они дороже на 229 (198 с черным корпусом) долларов. Неужели за эти немалые деньги разработчики просто переключили тумблер внутри корпуса?!

Изделия от ECT будем считать неконкурентоспособными. Эти модели все еще можно найти в продаже (в основном на барахолках форумов), однако даже флагман Prometeia Mach II GT похвастаться достойными показателями производительности не может.

Нельзя упускать из внимания перспективную бюджетную фреонку OCZ Cryo-Z . Но, судя по заявленной цене в 500 долларов, результаты разгона будут на столь же низком уровне.

Кроме этого существуют отдельные частные изготовители. Продукты, равные по эффективности VapoChill LS, обойдутся в среднем на треть дешевле, но последующее гарантийное обслуживание на протяжении 12 месяцев при этом отсутствует. Если хочется большего - есть шанс найти у энтузиастов каскадные фреонки. На них можно получить около -100 градусов при нагрузке. Но цена самых простых вариантов может достигать 1000 евро и выше.

Осмотр

Заказывая VapoChill LS, мы должны получить относительно большую, красивую коробку белого цвета с логотипом модели. Ее размеры 60x31x40 см, вес около 18 килограмм. Но это не всегда так.

При получении посылки постарайтесь распаковать коробку и проверить боковые панели фреонки на наличие вмятин, особенно с левой стороны, где компрессор установлен практически вплотную. Если видимых повреждений нет - любые другие "поломки" можно будет списать на производителя и включать агрегат для проверки нет особого смысла.

В моем случае в магазине не удосужились закрепить компрессор крепежными винтами после тестовой проверки на работоспособность. Если до пункта назначения далеко и у вас нет машины - лучше сразу позаботиться о такси. Не советую класть коробку в багажник - только на руки, в салон. Наши дороги даже при минимальной скорости приводят к встряхиванию внутренностей компрессора, что может вывести его из строя. Также желательно не переворачивать агрегат и держать его горизонтально. Если уж пришлось это сделать, и вы не уверены в правильности транспортировки до места получения - производитель рекомендует поставить систему на 12 часов в нормальное для нее положение. За это время теоретически все масло из трубок и обмотки должно скопиться в картере. Извлечение VapoChill LS без разрезания коробки в одиночку практически невозможно, ведь блоки из полистирола очень плотно сидят внутри. Кроме непосредственно фреонки в варианте с креплением для 775-го сокета мы должны найти такие комплектующие:

  • Руководство пользователя
  • Брошюра по установке испарителя
  • Прижимная пластина
  • Тюбик диэлектрической субстанции для предотвращения коррозии процессора и сокета
  • Специальная палочка для нанесения вышеуказанной субстанции
  • Двухжильный провод для включения материнской платы
  • Два USB-кабеля
  • Chill Сontrol - плата, по сути "мозг" системы
  • Три прокладки: две над сокетом и вокруг него, другая для приклеивания к прижимной пластине
  • Два нагревательных элемента
  • Чертеж для вырезания отверстия под гофру в корпусе
  • Корпус для испарителя с внутренним изолятором из твердого материала
  • 4 бочонка, 4 пружины, 8 пластмассовых шайб, 4 пластмассовых колечка и, как вариант, 4 болта, которые используются для фиксации компрессора

Также существует вариант поставки с предустановленным китом для сокетов 754, 940, 939 и 478.

Осмотрим фреонку.

Собственно размеры корпуса - 49x21x21 см. Как мы можем видеть, декоративные алюминиевые панели выполнены в стиле корпусов Lian-Li прошлого поколения, а именно моделей: PC-60, PC-61, PC-65, PC-7, PC-12, PC-37, PC-82, PC-601, PC-0700, PC-0716a, PC-0716s, PC-6077, PC-6085A. Производитель рекомендует использовать именно эти корпуса, так как они лучше подходят с эстетической точки зрения. Проблема состоит в том, что они довольно редкие гости в отечественных магазинах. Толщина панелей – 1,5 мм. Заменить их вручную очень просто - все легко снимается с помощью шестигранника. Если захотите снять панели - будьте бдительны! На них наклеены стикеры, в случае деформации которых (они очень легко рвутся) вы теряете гарантию. Если такое произошло, по советам официальных лиц, вам необходимо отправить письмо непосредственно представителям Asetek или лучше прямо на форуме оставить пост с объяснением того, что заставило вас снять панели - и, возможно, тогда все будет хорошо.

Одна расположена сразу возле места выхода гофры, а другая - в начале левой панели посередине. Если первую можно отклеить без труда, то чтобы добраться до второй, нужно сначала открутить переднюю панель (осторожно снимайте, иначе можно поцарапать контуры дисплея) и только потом можно пытаться отклеить ее через довольно маленький проем. Также все панели отличаются просто ужасным качеством изготовления - везде заусенцы, с внутренней стороны - линии разметки и грязь. Дно испарителя отполировано хорошо, но не до зеркальной поверхности, да и его ровность также не безупречна.

Синий дисплей имеет регулируемую контрастность и белую подсветку. В выключенном состоянии выводится название "VapoChill LightSpeed by Asetek Inc.", а при работе - температура испарителя. Но последнее можно легко заменить показаниями любого термодатчика или вывести скорость одного из подключенных вентиляторов. Также предусмотрена возможность набора индивидуального текста.

Сверху на корпусе имеются 4 крепежных винта, которые используются для фиксации корпуса компьютера. Для этого требуется высверлить отверстия под них и соответственно под гофру. Вот тут и пригодится чертеж из комплекта. Делать это, конечно, не обязательно - при использовании открытого стенда достаточно лишь разместить поблизости материнскую плату. При этом наверняка возникнут проблемы с проводами из-за их недостаточной длины, короткой гофры.

Переходим к осмотру внутренних компонентов.

Первое, что разочаровало - окалина после пайки на всех трубках. В корпусе трудятся два 120 мм вентилятора Panaflo на выдув, а холодный воздух поступает через сквозные боковые отверстия. При довольно больших размерах лопастей они оказались тихими, в сравнении с турбиной серии Radeon Х1800/1950 от ATI, даже на максимальных оборотах, которые можно выставить с помощью VapoChill Control Panel . В целом вся система при работе издает приличный шум, но к нему можно привыкнуть и он не раздражает.

В данной системе используется компрессор Danfoss FR8.5CL. В отличие от устарелых Vapochill XE и Mach II GT, в которых использовался фреон R404a, VapoChill LS заправлен более эффективным 507-м. Стоковая VapoLS справляется с тепловыделением всех современных процессоров, в том числе и Quad Core. Но по причине неразвитого дизайна испарителя, разработанного небезызвестным Chilly1, конденсатором малой мощности, настройкой на другое тепловыделение, обладатели четырехъядерных процессоров должны довольствоваться ограничениями по разгону в виде 3,6 ГГц на старом степпинге и примерно 4 ГГц на новом. В противном случае из-за постоянного перегрева компрессор может выйти из строя. Чтобы выжать максимум из этих процессоров, достаточно только перенастроить VapoChill LS на нагрузку около 300 Вт, ведь феонка рассчитана всего лишь на 225 Вт - чуть меньше выделяли разогнанные Prescott в 2004 году. Также для улучшения показателей заодно можно сменить конденсатор. Снятие боковых панелей тоже улучшает температурный режим. Для бенчмаркинга очень советую дополнительно использовать кондиционер - результат примерно равен приросту от отключения одного ядра на Conroe +100 МГц.

Установка

Процесс относительно сложный. Интуитивно заставить все работать, скорее всего, не получится. Лучше всего воспользоваться подробным руководством по установке с официального сайта, но и оно имеет несколько недочетов. Стоит отметить, что использование нагревательных элементов при бенчмаркинге неоправданно. Тепловыделение процессоров не дает промораживаться ни сокету, ни изоляции испарителя. Конечно, установить их стоит, ведь отключить все можно и посредством ПО. С открытым стендом будьте бдительны - испаритель надо устанавливать только в одном возможном положении, иначе элементы на материнской плате вокруг сокета будут препятствовать плотному прилеганию изоляции. По рекомендации Asetek, диэлектрическую пасту использовать стоит только на свой страх и риск. Ничего, кроме мнимого чувства безопасности и потери товарного вида материнской платы вы от этого не получите. Вычистить сокет даже при помощи струи сжатого воздуха очень тяжело. Если уж решились на этот шаг - не используйте мягкую палочку из комплекта - ею очень легко повредить хрупкие ножки. Лучше всего это делать пальцем.

Кстати, о Chill Control. Эта маленькая плата не только координирует работу всей системы охлаждения, но и является неплохим реобасом и термометром. Кроме необходимых коннекторов на ней размещено два трехпиновых разъема для вентиляторов, 4 разъема для нагревательных элементов, 5 разъемов для подключения датчиков температуры. Первый, по умолчанию, используется встроенным в испаритель датчиком, и подключение к нему невозможно. Последнее руководство предназначено для версии 2.2, но в комплекте поставки на последних VapoChill LS идет версия 3.2. Большое количество этих деталей идет с браком. Из-за этого пользователь получает полностью неработоспособную систему. О поломке сигнализирует красный светодиод при подключенных кабелях и питании. Для ее установки в комплекте поставки имеется четыре штырька на клейкой субстанции. Они одноразовые, так что переклеивать их с места на место не получится. Хочется отметить потребность в существовании простой кнопки, при которой бы включалась фреонка, но производитель этого не предусмотрел.

Все готово для старта системы. Уже в операционной системе устанавливаем Control Panel. С помощью этой утилиты можно контролировать показатели термодатчиков и скорости вентиляторов. Также можно устанавливать следующие настройки:

  • Нужная температура на испарителе для старта компьютера
  • Температура, при которой срабатывает предупреждение о перегреве
  • Температура, при которой происходит экстренное выключение
  • Скорость вентиляторов
  • Мощность нагревателей

Практика

В технической спецификации на официальном сайте заявлено о -25,5°С при 200 Ваттах нагрузки. В режиме простоя -48°С. На практике каждый юнит будет отличается по производительности. Мне попался экземпляр, способный на -60° в простое. На рабочий режим в 20 градусов ниже нуля агрегат выходит за минуту.

Конечно, опытные люди, основываясь на этом показателе, могут сказать, какие результаты можно получить с тем или иным процессором, но лучше проверить на практике. В наличии имеются два процессора, а именно: Intel Core Duo E6400 (Conroe B2, L630A, 2 Мб кэша второго уровня) и Intel Celeron D 352 (Cedar Mill C1, 5629B) на архитектурах Core и NetBurst соответственно. Оба ядра выполнены по современной 65-нм технологии.

Конфигурация тестового стенда:

  • Материнская плата ASUS Commando
  • Оперативная память Geil GX21GB8500PDC (2х512 Мб Micron D9GCT)
  • Видеокарта Sapphire X1950XT
  • Блок питания FSP FX700-GLN

При использовании материнских плат на основе чипсета Intel P965 советую сделать включение VapoChill LS ручным из-за проблем со старт-стопами. В таком режиме электроника иногда дает сбой и фреонка работает постоянно, не обращая внимания на команды. Выключение в этом случае возможно только посредством обесточивания.

Методика тестирования представляет собой замер температуры процессора, как в номинальном режиме, так и в разгоне, при максимальном тепловыделении. Загрузкой процессоров будет заниматься утилита TAT 2.05. Доверим результирующие показания температуры программе S&M 1.9.0b. Для лучшей достоверности теплораспределитель процессора Celeron D 352 был отполирован. Поверхность Е6400, на удивление, очень ровная. Так как рабочие температуры не превышают -50°С, то будет использоваться термопаста КПТ-8. Для наглядности результаты занесены в сводную таблицу.

Default Разгон
Idle Burn Idle Burn
E6400 @ 2,13 ГГц 1,28 В/4,26 ГГц* -38 (-50) -20 (-43) -7,5 (-37) 39 (-30)
Celeron 352 @ 3,2 ГГц 1,2 В/5,5 ГГц* -42 (-48) -27,5 (-45) -13,5 (-35,4) 32 (-27)
* - использовалось напряжение 1,73 В vcore и 1,55 В vsfb

В скобках указана температура испарителя. Плюсовые температуры в нагрузке, конечно, могут пугать, но ведь это тестовая утилита, а в повседневном использовании подобные нагрузки получить невозможно. Результаты разгона процессоров не менее впечатляющие. Максимальная частота, при которой Е6400 прошел валидацию, составляет 4,45 ГГц , а Celeron D 352 – 6,1 ГГц - практически двукратный прирост частоты. Благодаря Asetek VapoChill LS я добился прохождения SuperPi 1M за 13,23 секунды на первом процессоре и за 23,91 сек. на втором.

Выводы

Плюсы:

  • Лучшая производительность
  • Стилизованный под корпуса Lian-Li внешний вид
  • Полная защита от конденсата
  • Сменные алюминиевые панели

Минусы:

  • Относительно шумная работа
  • Ограниченный разгон процессоров на ядре Kentsfield
  • Увеличенное потребление электроэнергии в сравнении с СВО/кулерами
  • Главным минусом Asetek VapoChill LS является цена

А если посчитать, во что обойдется постройка аналогичной системы фреонового охлаждения? Как минимум месяц на изучение объемного теоретического материала с разных форумов, сайтов. Мало прочитать - нужно все запомнить и осознать. Достойные комплектующие, материалы и инструменты обойдутся уже в 500 долларов. Добавьте к этому нелегкие поиски меди на испаритель и хорошего токаря. Затем долгий и в какой-то мере опасный процесс сборки с последующей настройкой. VapoChill LS - это неплохой выбор для тех, кто желает понять, что такое фреонка на практике - и только после этого принять решение, в каком плане двигаться дальше. Для бенчинга это может быть безболезненный и простой переход на стаканы для DI/LN2 (сухой лед/жидкий азот) или более сложный - постройка своей фреонки с последующей практикой и наработке знаний и умения для каскада. Ну а если Вы просто геймер или активный участник проекта Folding@Home - лучшего варианта не найти. Только с помощью Asetek VapoChill LS можно получить максимальный разгон в сочетании с повседневным использованием.

Введение

Выделяемое количество теплоты зависит от содержимого Вашего системного блока, от его энергопотребления. Это вовсе не значит, что охлаждать нужно абсолютно все задейств о ванные составляющие системного блока. Вешать вентиляторы на розетки вовсе не нужно, но вот современным процессорам и видеокартам без охлаждения ну никак не обойтись.

От тепловыделения, увы, никуда не деться, но ведь эта проблема имеет немало решений. Другой вопрос – чем охлаждать. На данный момент существует достаточно много систем охл а ждения, все они используют общий принцип действия — перенос тепла от более горячего тела (охлаждаемого объекта) к менее горячему (системе охлаждения). Мы рассмотрим только сл е дующие системы:

— Радиатор;

— Кулер;

— Система жидкостного охлаждения;

— Система охлаждения на элементах Пельтье;

— Система фазового перехода (фреонка);

— Система экстремального охлаждения на жидком азоте;

Можно использовать и наиболее эффективные установки, в которых совмещаются ра з личные виды перечисленных систем.

1 Радиаторы

Радиатор (новолат. radiator, «излучатель») — теплообменник, служит для рассеивания т е пла от охлаждаемого объекта. Механизмом передачи тепла здесь является теплопроводность, способность вещества проводить тепло внутри своего объёма. Все, что нужно — создать физ и ческий контакт радиатора с охлаждаемым объектом, именно поэтому он всегда находится в тесном контакте с тем, что охлаждает. После того, как радиатор принимает на себя часть тепла от охлаждаемого объекта, его задача – рассеять его в окружающий воздух.

Но мало просто обеспечить физический контакт, ведь рано или поздно от постоянно н а гревающегося охлаждаемого объекта нагреется и сама система охлаждения. А процесса тепл о обмена в системе тел с одинаковой температурой быть не может. Чтобы найти выход из данной ситуации и не столкнуться с проблемой перегрева, необходимо организовать подвод какого-то холодного вещества, чтобы охлаждать саму систему охлаждения. Такое вещество общепринято называть хладагентом (холодильный агент, частный случай теплоносителя).

Радиатор является воздушной системой охлаждения, т.е. хладагентом в его случае являе т ся холодный воздух из окружения. Тепло от охлаждаемого объекта идет к основанию радиат о ра, потом равномерно распределяется по всем его рёбрам, а уже после этого оно уходит в окр у жающий воздух. Такой процесс называется теплопроводностью. Воздух вокруг радиатора п о степенно нагревается, из-за чего процесс теплообмена становится все менее эффективным. Э ф фективность теплообмена можно увеличить, если постоянно подавать холодный воздух к рё б рам радиатора. Для эффективного охлаждения нужна свободная циркуляция холодного воздуха.

Такие физические величины, как теплопроводность (скорость распространения тепла по телу) и теплоемкость (количество теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 градус) у радиатора должны быть на высоком уровне. Мы знаем, что на и большей теплопроводностью обладают металлы. На самом деле это не так – наибольшая тепл о проводность у алмаза, и лежит она в диапазоне от 1000 до 2600 Вт/(м·K). Из металлов же лучше всех тепло проводит серебро – его теплопроводность равна 430 Вт/(м·K). После серебра идет медь , потом золото . Завершает цепочку алюминий .

Наиболее применимыми являются два материала – алюминий и медь. Первый — из-за низкой стоимости и высокой теплоёмкости (930 против 385 у меди), второй — из-за большой теплопроводности (к недостаткам меди можно отнести более высокую температуру плавления и сложность ее обработки). Серебро же, за его высокую теплопроводность, иногда используют для изготовления основания радиатора. Еще для изготовления радиаторов может применяться сплав алюминия с кремнием – силумин. Преимущество его использования – дешевле алюм и ния.

Если радиатор сделан из высоко теплопроводного материала, то температура в любой его точке будет одинакова. Выделение тепла будет одинаково эффективно со всей площади п о верхности. Т.к. объект отдаёт тепло со своей поверхности, то это значит, что для достижения наилучшего отвода тепла, площадь поверхности охлаждаемого объекта должна быть макс и мальной. Существует два способа увеличения площади радиатора — увеличение площади р ё бер с сохранением размеров радиатора и увеличение геометрических размеров радиатора. Вт о рой вариант, понятно, предпочтительней, но это вносит ряд неудобств – например, увеличивает вес и размеры радиатора, что может затруднить монтаж устройства. Ну и цена, соответственно, растет пропорционально количеству израсходованного на изготовления материала.
Типов конструкций ребер радиаторов существует огромное множество. Они могут быть толстыми, если были созданы процессом выдавливания. Или наоборот, тонкими – если ребра отливали. Они могут быть прямыми по всей длине радиатора, а могут быть расчерчены поп
е рек. Могут быть плоскими, согнутыми из пластин, вдавленными в основание. Но лучше всего в работе на сегодняшний день себя показывают радиаторы игольчатого типа – в таких радиаторах вместо ребер квадратные или цилиндрические иглы.

1.2 Виды радиаторов

Существуют следующие виды методов производства радиаторов, по которым она кла с сифицируются:

1. Прессованные (экструзионные) радиаторы — самые дешевые и самые распростр а ненные на рынке. Основным материалом, который используется в их производстве, является алюминий. Радиаторы такого типа изготавливаются путем прессования (экструзии), который позволяет получить достаточно сложные профили поверхностей ребер и достичь хороших те п лоотводящих свойств.

2. Складчатые (ленточные) радиаторы — получаются тогда, когда тонка металлическая лента, свернутая в гармошку, пайкой (или с помощью адгезионных проводящих паст) прикре п ляется на базовую пластину радиатора. Складки ленты-гармошки в данном случае играют роль ребер. Такая технология изготовления позволяет получать компактные изделия по сравнению с прессованными радиаторами, но с примерно такой же тепловой эффективностью.

3. Кованые (холоднодеформированные) радиаторы — радиаторы, получаемые в р е зультате использования технологии холодного прессования. Эта технология позволяет созд а вать поверхность радиатора в виде стрежней произвольного сечения, а не только стандартных прямоугольных ребер. Как правило, они дороже радиаторов первых двух типов, но их эффе к тивность зачастую гораздо ниже.

4. Составные радиаторы — близкие родственники «складчатых» радиаторов. Несмотря на это, их отличает существенный момент: в данном типе радиаторов поверхность ребер фо р мируется не лентой-гармошкой, а тонкими раздельными пластинками, которые закрепляют пайкой или стыковой сваркой на подошве радиатора. Радиаторы этого типа немного более э ф фективны, чем экструзионные и складчатые.

5. Литые радиаторы – в производстве изделий такого типа используется технология л и тья в пресс-форму под давлением. Применение такой технологии позволяет получать профили реберной поверхности практически любой сложности, значительно улучшающий теплоперед а чу.

6. Точеные радиаторы — являются самыми дорогими и продвинутыми радиаторами. И з делия такого типа создаются прецизионной механической обработкой (на специальных высок о точных станках с ЧПУ) монолитных заготовок и отличаются самой высокой тепловой эффе к тивностью. Если бы не производственная стоимость, то радиаторы такого типа давно смогли бы вытеснить своих конкурентов на рынке.

1.3 Тепловые трубки

В современных системах перестали быть редкостью применяемые в радиаторах и в кул е рах – тепловые трубки или просто теплотрубки.

Она представляет собой герметическое теплопередающее устройство, которое работает по замкнутому испарительно-конденсационному циклу в тепловом контакте с внешними — и с точником и стоком тепла. Тепловая энергия берется на охлаждаемом объекте и затрачивается на испарение теплоносителя, который находится внутри корпуса тепловой трубки. Далее тепл о вая энергия переносится паром в виде скрытой теплоты испарения далее, на определенном ра с стоянии от места испарения, где при конденсации пара выделяется в сток. Образовавшийся конденсат снова возвращается в место испарения — либо под действием капиллярных сил (к о торые обеспечиваются наличием специализированной капиллярной структуры внутри тепловой трубки), либо за счет действия массовых сил (такая конструкция обычно именуется термосиф о ном).

Получается, что вместо привычного электронного механизма переноса тепла (путем те п лопроводности, что имеет место в сплошном металлическом теплопроводе), в теплотрубке и с пользуется молекулярный механизм переноса (точнее, процесс переноса кинетической и кол е бательной энергии беспорядочного движения частиц пара).


1.4 Оптимальная площадь

Нужно стремиться к тому, чтобы площадь контакта между радиатором и охлаждаемым объектом была как можно больше – ведь именно через эту площадь тепло от объекта будет п о ступать на радиатор. Но нужно учитывать то, что при соприкосновении двух даже самых гла д ких поверхностей, между ними все равно остаются мельчайшие полости и зазоры, заполненные воздухом [напомню, что теплопроводность воздуха 0.026 Вт/(м·K)] – это может сыграть свою злую шутку.

Чтобы избавиться от вредного воздуха и позволить радиатору работать с максимальной отдачей, применяют различные тепловые интерфейсы, чаще всего это термопроводная паста (термопаста). Она имеют большую теплопроводность [благодаря использованию в своем сост а ве таких веществ, как алюминий и серебро (до 90% содержания)] и за счет текучести заполняет собой все неровности в соприкасающихся поверхностях.

Термопаста поставляются в комплекте с большинством брендовых кулеров и радиаторов. Бывает в виде шприца или небольшого тюбика-пакетика. Рекомендуется избегать попадания термопасты на электрические элементы компьютера.

Одним из параметров термопаст является продолжительность периода, когда она выходит на максимальную эффективность. В среднем это время составляет около недели. Компания Coolink недавно произвела первую термопасту с добавлением наночастиц – ее преимуществом является то, что никакого периода ожидания нет.

Помимо термопасты есть и другой вид теплового интерфейса – проводящие прокладки. Суть их работы та же, но используются они по другому – кладутся на поверхность контакта и при тепловом воздействии меняют свое агрегатное состояние, заполняя неровности и вытесняя воздух.

1.5 Итог по радиаторам

Несмотря на всевозможные вариации, самое главное преимущество радиатора то, что он не является источником какого-либо шума. К минусам можно отнести относительно низкую эффективность, отсутствие потенциала для разгона системы и зачастую крупные габариты.

Если доверять охлаждение современных видеокарт и процессоров пассивным радиаторам достаточно опасно, то охлаждение модулей памяти, жестких дисков, чипсета, цепей питания – можно и положиться.

2 Кулеры

Кулер (англ. cooler — охладитель) совокупность радиатора и вентилятора, устанавлива е мого на электронные компоненты компьютера с повышенным тепловыделением. Самая главная задача устройства — снижение температуры охлаждаемого объекта и поддержание ее на опр е деленном уровне. Достигается это за счет непрерывного потока воздуха, обдувающего ради а тор. То есть менее эффективный процесс излучения превращается в более эффективный — ко н векцию. Кулеры — это самый простой, самый быстрый, доступный и, в большинстве случаев, достаточный способ охлаждения компонентов компьютера — воздухом охлаждается все.

Вариантов исполнения существует гигантское множество. Если говорить про внешний вид можно долго, то касательно функциональных отличий много не расскажешь.

Кулеры бывают разных размеров – обычно от 40х40мм до 320х320мм.

Самой важной частью любого кулера является его вентилятор. Именно он шумит у Вас в Вашем системном блоке. А если быть более точным, то шум этот появляется при столкновении воздушного потока с радиатором. Особенно этот шум ощутим на дешевых моделях кулеров, т.к. над их дизайном никто не работает.

Вентилятор состоит из крыльчатки (в ней по внутреннему диаметру расположен магнит) и электромотора, который этот магнит вместе с крыльчаткой вращает. Через центр вентилятора идет осевой штырь, который размещается в центре мотора. Для большей плавности хода крыльчатки могут использоваться три вида подшипников (срок службы которых производители указывают в тысячах часов на упаковке):

— Подшипник скольжения (sleeve bearing) — наиболее дешевый и наименее надежный вариант, создающий при работе высокий уровень шума.

— 1 подшипник скольжения (sleeve bearing) + 1 подшипник качения (ball bearing) — ко м бинированный подшипник- более долговечная конструкция, работающая в среднем в два раза дольше, чем на подшипнике скольжения.

— 2 или 4 подшипника качения (ball bearing) — наиболее надежные варианты с низким уровнем шума, но стоят такие вентиляторы существенно дороже первых двух.

— Игольчатые и NCB (наномиллиметровые керамические) подшипники — устанавлив а ются в вентиляторы ограниченным числом производителей. Они отличаются низким уровнем шума, невысокой стоимостью и очень большим сроком службы.

Кстати, о сроке службы (сроке безотказной работы). Если срок службы указан в 40-50 т ы сяч часов (почти 5 лет, хотя бывает и больше — до 300 000 часов), это вовсе не значит, что вспомнить о кулере в следующий раз придется только через это время. Нет, это число нужно делить на два-три, и все равно время от времени производить профилактические действия – протирать от пыли, продувать, смазывать. Если не ухаживать за кулером, он может начать ш у меть, а если совсем про него забыть – то и остановиться.

Производительность вентилятора (расходная характеристика) – пожалуй, основная его характеристика. Измеряется она в количестве кубических футов воздуха, перегоняемых им в минуту, сокращенно — CFM (Cubic Feet per Minute). Эта характеристика главным образом з а висит от площади вентилятора, профиля лопастей и скорости их вращения. Чем больше это значение, тем выше эффективность охлаждения и, как правило, тем выше уровень шума, созд а ваемый вентилятором при работе.

2.1 Питание кулеров

Перегонять кубометры воздуха кулер может своими лопастями на скорости до 8000 об о ротов в минуту (для сравнения, двигатель обычнго легкового автомобиля выдает 5-8 тысяч об о ротов, двигатель болида «Формула-1» — до 22 000 оборотов). Но понятное дело, что при такой скорости шум от работы кулера будет ощутимым. Поэтому предпочтительнее брать кулеры с термодатчиками – которые «анализируют» температуру и в зависимости от ситуации могут увеличивать или уменьшать количество оборотов. Чаще всего это положительно сказывается на шуме от работы.

Все компьютерные кулеры питаются от постоянного тока, напряжение которого чаще вс е го составляет 12В. Для подключения к питанию они используют Molex-коннекторы (для Smart-вентиляторов) или PC-Plug-коннекторы. PC-Plug имеет четыре провода: два чёрных (земля), жёлтый (+12В) и красный (+5В).

Разъёмы Molex на материнских платах используются для того, чтобы система сама могла контролировать скорость вращения вентилятора, подавая на красный провод различное напр я жение (обычно от 8 до 12 В). По жёлтому (сигнальному) проводу система узнает от кулера св е дения о скорости вращения его лопастей. Использование Molex имеет один весомый недост а ток: опасно цеплять вентиляторы с потребляемой мощностью более 6Вт.

Дело обстоит иначе с разъемом PC-Plug – он выдерживает десятки Ватт. Но при подкл ю чении к нему Вы не сможете узнать, работает Ваш вентилятор или нет. Найти переходник с одного разъема на другой сейчас не составляет никакого труда – они часто идут в комплекте.

Так же для снижения шума кулер иногда переводят на 5В или 7В. Шлейфы округляют, провода заплетают в косички или обтягивают оплеткой и убирают в укромное местечко – чтобы не мешали продуманной воздушной циркуляции.

2.2 О шумах

Все кулеры классифицируются по уровню шума, издаваемому от их работы на следующие классы (чем ниже уровень шума, тем более комфортной будет работа за компьютером):

— Условно бесшумный . Уровень шума такой системы охлаждения составляет менее 24 дБ. Этот показатель ниже типового фонового шума в тихой комнате (в вечернее или ночное время суток). Таким образом, кулер не вносит практически никакого существенного вклада в шумовую картину. Обычно это значение достигается при минимальном числе оборотов вент и лятора для систем с регулятором скорости вращения.

— Малошумный . Уровень шума от такой системы охлаждения лежит в пределах от 24 до 30 дБ включительно. Кулер вносит еле ощущаемый вклад в акустику ПК.

— Эргономичный . Уровень шума такой системы охлаждения лежит в диапазоне от 37 до 42 дБ включительно. Шум от такого кулера по всей вероятности будет заметен в большинстве пользовательских конфигураций компьютера.

— Не эргономичный . Уровень шума рассматриваемой системы охлаждения больше 42 дБ. В таких условиях кулер будет являться основным «генератором» шума компьютера практ и чески любой конфигурации. Домашнее применение такого кулера неоправданно – он больше подойдет для производственных и офисных помещений с фоновым шумом более 45 дБ.

2.3 Итог по кулерам

К плюсам кулеров относятся их распространенность, универсальность, доступность. Н е большую стоимость тоже можно отнести к плюсу, но стоит учитывать, что на хороший кулер жадничать не стоит – ведь это, по сути, второе сердце компьютера – нельзя, чтобы останов и лось.

К минусам можно отнести возможные шумы, которые рано или поздно появятся на любом кулере.

Подводя итог вышесказанному. На данный момент кулер – самая распространенная си с тема охлаждения, охладить которой можно что угодно – от процессора до винчестера и памяти. Вопрос заключается в выборе и подборе нужного кулера – ведь их существует великое множ е ства от десятков производителей.

3 Система жидкостного охлаждения

Система жидкостного охлаждения – это такая система охлаждения, в качестве теплонос и теля в которой выступает какая-либо жидкость.

Вода в чистом виде редко используется в качестве теплоносителя (связано это с электр о проводностью и коррозионной активностью воды), чаще это дистиллированная вода (с разли ч ными добавками антикоррозийного характера), иногда — масло, другие специальные жидкости.

Главная разница в использовании воздушного и жидкостного охлаждения заключается в том, что во втором случае для переноса тепла вместо нетеплоемкого воздуха используется жи д кость, обладающая гораздо большей, по сравнению с воздухом, теплоемкостью.

Принцип действия системы жидкостного охлаждения отдаленно напоминает систему о х лаждения в двигателях автомобиля — через радиатор вместо воздуха, прокачивается жидкость, что обеспечивает гораздо лучший теплоотвод. В радиаторах охлаждаемого объекта вода нагр е вается, после чего вода из этого места циркулирует в более холодное, т.е. отводит тепло.

3.1 Составляющие системы

Типичная система состоит из водоблока, в котором происходит передача тепла от проце с сора теплоносителю, помпы, прокачивающей воду по замкнутому контуру системы, радиатора, где происходит отдача тепла от теплоносителя воздуху, резервуара (служит для заполнения системы водой и прочих сервисных нужд) и соединительных шлангов.

Поверхность соприкосновения водоблока с процессором обычно отполирована до зе р кального отражения, по уже озвученным мною причинам. Через знакомый термоинтерфейс в о доблок крепится на охлаждаемый объект. Обычно он крепится с помощью специальных скоб, что исключает его возможность двигаться. Бывают водоблоки и для видеокарт, но явных отл и чий от принципа действия процессорных водоблоков нет – все различия в креплении и форме радиатора.

Одна из частых проблем обладателей систем жидкостного охлаждения это перегрев ок о лопроцессорно-сокетных элементов материнской платы, которые могут греться ни чуть не хуже своего старшего брата. Связано это с тем, что обычно в таких системах отсутствует циркуляция холодного воздуха. Как этого избежать? Совет, пожалуй, один – выбирайте системы (совм е щайте) с дополнительным кулером, который будет охлаждать остальные греющиеся силовые элементы.

Водоблок через специальные трубки соединяется с радиатором, крепиться который может как внутри системного блока, так и снаружи (например, с задней стороны системника). Второй вариант, пожалуй, предпочтительнее. Судите сами: больше свободного места внутри системн о го блока, более низкая температура окружающей среды положительно влияет на радиатор. Плюс он дополнительно обдувается корпусным вентилятором.


Резервуар для жидкости, или иначе, расширительный бачок, так же может находиться снаружи системного блока. Его объем в штатных системах варьируется от 200мл до литра.

Производители систем охлаждения стараются заботиться о своих пользователях и пр е красно понимают, что для хорошей системы охлаждения место найдется внутри не каждого системного блока. Тем более, нужно учитывать, что каждый производитель как-то хочет выд е литься на фоне других. Поэтому существует огромный выбор внешних систем жидкостного о х лаждения (понятное дело, что без соединительных трубок с радиатором на конце никак не пр е небречь). Их не стыдно выставить напоказ; обычно внутри таких систем скрывается сразу все – помпа, резервуар, продуваемый вентиляторами радиатор. Но и стоят они, обычно, демонстр а тивно дорого.


3.2 Итог по системам водяного охлаждения

Для чего же применять жидкостные системы охлаждения? Ведь если посудить строго, то обычных штатных кулеров всегда достаточно, в обычных условиях работы ПК (если бы это б ы ло не так, то их бы не ставили, а ставили системы жидкостного охлаждения). Поэтому чаще всего такую систему следует рассматривать с позиции разгона – тогда, когда возможностей воздушной системы охлаждения будет не хватать.

Другим плюсом жидкостной системы охлаждения является возможность ее установки в ограниченном пространстве корпуса. В отличие от воздуха, трубки с жидкостью можно задать практически любые направления.

Еще один плюс такой системы – ее беззвучность. Чаще всего помпы заставляют циркул и ровать поток воды по системе, не создавая шума больше значения в 25 дБ.

Минус – дороговизна установки.

4 Система охлаждения на элементах Пельтье

Среди нестандартных систем охлаждения можно отметить одну очень эффективную си с тему – на основе элементов Пельтье. Жан Шарль Атаназ — французский физик, открывший и изучивший явление выделения или поглощения тепла при прохождении электрического тока через контакт двух разнородных проводников. Устройства, принцип работы которых использ у ет данный эффект, называются элементы Пельтье.

В основе работы таких элементов лежит контакт двух проводников с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт этих материалов, электрону необходимо приобрести энергию, чтобы он мог перейти в зону с большей энергией проводимости другого полупроводника. Охлаждение места контакта полупроводников прои с ходит при поглощении этой энергии. Нагревание же места контакта происходит при протек а нии тока в обратном направление.

На практике используются только контакт двух полупроводников, т.к. при контакте м е таллов эффект настолько мал, что незаметен на фоне явления теплопроводности и омического нагрева.

Элемент Пельтье содержит одну или несколько пар небольших (не больше 60х60 мм) п о лупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре [обычно теллур и да висмута (Bi2Te3) и германида кремния (SiGe)]. Они попарно соединены металлическими п е ремычками, которые служат термическими контактами и изолированы не проводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединены так, что образуется посл е довательное соединение многих пар полупроводников с разным типом проводимости — прот е кающий электрический ток протекает последовательно через всю цепь. В зависимости от того, в каком направлении течет электрический ток, верхние контакты охлаждаются, а нижние н а греваются — или наоборот. Таким образом переносится тепло с одной стороны элемента Пел ь тье на противоположную и создаётся разность температур.

При охлаждении нагревающейся стороны элемента Пельтье (радиатором или вентилят о ром) температура холодной стороны становится ещё ниже.

4.1 Итог по элементам Пельтье

К достоинствам такой системы охлаждения можно отнести небольшие размеры и отсутс т вие каких-либо подвижных частей, а также газов и жидкостей.

Минусом является очень низкий коэффициент полезного действия, что приводит к бол ь шой потребляемой мощности для достижения заметной разности температур. Так же, если эл е мент Пельтье выйдет из строя, то из-за отсутствия контакта между радиатором (или кулером) и процессора, последний моментально нагреется и может выйти из строя.

Элементы Пельтье еще обязательно найдут широкое применение, так как без каких-либо дополнительных устройств они легко позволяют получить температуры ниже 0°C.

5 Системы фазового перехода (фреоновые установки)

Не очень распространенный, но очень эффективный класс систем охлаждения – системы, хладагентом в которой выступают фреоны. Отсюда и название – фреоновые устанвоки. Но б о лее правильно было бы называть такие системы системами фазового перехода. На принципе действия таких систем работают практически все современные бытовые холодильники.

Один из вариантов охладить тело — заставить вскипеть на нем жидкость. Для перехода жидкости в пар, необходимо затратить энергию (энергия фазового перехода) – то есть закипая, жидкость отбирает тепловую энергию от окружающих ее предметов.

Слово «Фреоны» трактуется как галогеноалканы, фторсодержащие производные нас ы щенных углеводородов (главным образом метана и этана), используемые как хладагенты. Кр о ме атомов фтора, в молекулах фреонов содержатся обычно атомы хлора, реже — брома. И з вестно более 40 различных фреонов; большинство из них выпускается промышленностью. Фреоны — бесцветные газы или жидкости, без запаха.

Если же взять такую жидкость, которая будет закипать, скажем, при -40°С, то сосуд, в к о тором свободно кипит эта жидкость (такой сосуд называют испарителем), будет очень сложно нагреть. Его температура будет стремиться к -40°С. А поставив такой сосуд на нужный нам объект охлаждения (например, на процессор), мы сможем добиться того, чего и хотели – охл а дить систему.

Мощный компрессор после испарителя качает газ и подает его под большим давлением в конденсор. Там газ конденсируется в жидкость и отдает тепло. Конденсор, выполненный в виде радиатора, рассеивает тепло в атмосферу – этот этап мы уже хорошенько рассмотрели в пред ы дущих системах. Далее жидкий фреон поступает к испарителю, где выкипая, отбирает тепло – вот и весь замкнутый цикл. Цикл «фазовых переходов» потому так и назван — фреон попер е менно меняет свое агрегатное состояние.

Системы фазового перехода, испарители (холодильники) которых устанавливаются неп о средственно на охлаждаемые элементы, называются системами «Direct Die». Холодными в т а кой системе являются только сам испаритель и отсасывающая трубка, остальные же элементы могут иметь комнатную температуру или выше. Холодные элементы нужно тщательно тепл о изолировать для предотвращения образования конденсата.

Минусом фреонок является относительная громоздкость испарителя и отсасывающей трубки, поэтому объектом охлаждения выбираются лишь процессор и видеокарта.

Есть и еще одна разновидность систем охлаждения – чиллеры. Этот класс систем состоит в основном из систем жидкостного охлаждения, отличием же является наличие второй части (холодильника теплоносителя), которая работает вместо радиатора – зачастую эта часть являе т ся той самой системой фазового перехода. Достоинством такой системой является то, что ей можно охладить все элементы системника, а не только видеокарту и процессор (в отличие от «direct die»-систем). Система фазового перехода чиллера охлаждает лишь теплоноситель сист е мы жидкостного охлаждения, то есть в замкнутом контуре течет очень холодная жидкость. О т сюда и минус систем такого типа – необходимость изолирования всей системы (водоблоки, трубки, насосы и т.п.). Если же изолировать не хочется, то можно использовать маломощную фреоновую установку для чиллера, но тогда об экстремальном разгоне можно будет забыть.

5.1 Итог по фреоновым установкам

Плюсом системы является возможность достижения очень низких температур, возмо ж ность постоянной работы. Высокий КПД системы (потери минимальны). Из постоянных систем охлаждения, фреоновые – самые мощные. При этом они позволяют выносить тепло из корпуса, что положительно сказывается на температурах внутри него.

К минусам относятся такие особенности системы, как сложность изготовления такой си с темы [серийно выпускаемых систем не так много, цены на них высоки ]. Небольшой вес и м а ленькие габариты – все это в полной мере отсутствует в установках данного типа.

Условная стационарность системы. Практически во всех случаях (кроме тех случаев, к о гда Вы не планируете заниматься экстремальным разгоном) – потребуется теплоизоляция всей системы. Ну и самый, пожалуй, негативный момент – более чем ощутимый шум от работы (50-60 дБ).

Еще одним минусом фреонок является то, что на покупку фреона нужна лицензия. У кого ее нет, выбор не велик: в свободной продаже есть только один — R134a (точка кипения котор о го -25°С).

Существует еще один хладагент — R290 (пропан), но сейчас он не используется в охлад и тельных системах (возгораемость). Он обладает очень хорошими свойствами: точка кипения -41°С, совместим с любым маслом компрессора и главное, дёшев.

6 Система экстремального охлаждения

Рассмотрим системы, в качестве хладагента в которых используется жидкий азот.

Жидкий азот представляет собой прозрачную жидкость, без цвета и запаха, температурой кипения (при нормальном атмосферном давлении) которой равна ни много ни мало -195.8 гр а дусов по Цельсию. Для хранения жидкого азота применяют специальные резервуары — сосуды Дьюара объемом от 6 до 40 литров.

Установки данного типа предназначены только для экстремального охлаждения, в экстр е мальных условиях. Одним словом, при разгоне.

6.1 Организация азотной системы охлаждения

Системы с жидким азотом не содержат никаких помп или других подвижных элементов. Она представляет из себя высокий металлический (медный или алюминиевый) стакан с дном, который плотно соединяется с центральным процессором. Достать такую штуковину не так-то просто – поэтому умельцы зачастую делают его самостоятельно.


Основной проблемой при разработке стакана является обеспечение процессора при по л ной нагрузке минимальной температурой. Ведь теплопроводные свойства жидкого азота сильно отличаются от той же воды. Он берет лишь тем, что «промораживает» стенки стакана, позволяя охладить процессор до температуры ниже 100 градусов. А так как тепловыделение камешка в простое и в режиме полной нагрузки отличается достаточно существенно (а скачки происходят мгновенно) — стакан часто не в состоянии вовремя эффективно отвести тепло. Для совреме н ного процессора оптимальной температурой является -110-130 градусов. Да, подойдет не любой термоинтерфейс. DeDaL советует AS ceramique.

После изготовления стакана, его (и материнскую плату) нужно тщательно теплоизолир о вать, чтобы конденсат, который неминуемо образуется от такого перепада температур, не зам к нул какие-нибудь контакты на материнской плате. Обычно используют различные пористые и пенистые материалы, например вспененный каучук – неопрен. В несколько слоев обматывают отрезанным куском, после чего закрепляют тем же скотчем.

С изоляцией материнской платы несколько сложнее. Чаще всего поступают так – закле и вая разъемы, все «заливают» диэлектрическим лаком. Причем, с обратной стороны матери н ской платы такую процедуру тоже нужно проделать – в районе процессорного сокета. Такая л а кировка абсолютно не мешает работе платы (хотя, вы автоматически лишаетесь гарантии – так, на всякий случай, если еще не лишились) – но зато вы почти гарантированно исключаете во з можность пострадать от протекания жидкого азота.

Дальше все просто. После того, как Вы тщательно соберете все компоненты, можно пр и ступать. С помощью какой-то промежуточной емкости (например, термос или какой-то другой теплоизолированный стакан) наливаете азот в стакан на материнской плате, после чего можете тестить свою систему.

Кстати о тестах – вот список тех бенчмарков, которые официально приняты:

— Aquamark 3.0

— Super Pi как самый фундаментальный

— Pifast

Для часа работы компьютера достаточно 4-5 литров азота. Заливать в стакан нужно пр и мерно до половины, причем постоянно поддерживая этот уровень.

Минусом является то, что систему с азотом нельзя собрать в небольшую систему под ст о лом и чтобы она там сама по себе стояла. Говоря иначе, такое охлаждение не подходит для р е шения бытовых задач – нужен постоянный и ответственный контроль, все нужно стараться д е лать тщательно и без ошибок.

Список литературы

1. http://habrahabr.ru/blogs/hardware/64162/

2. http://habrahabr.ru/blogs/hardware/64166/

PAGE \* MERGEFORMAT 2

Похоже, Россия становится не только "родиной слонов" и великих комбинаторов, но и местом рождения остроумных технических решений для современных высокопроизводительных вычислительных систем.

В начале двадцатого века паровозы доставляли пассажиров из Москвы в Санкт-Петербург за десять часов. При этом их КПД не превышал семи процентов. То есть использовалась только одна четырнадцатая часть энергии дров и угля, а остальные тринадцать обогревали атмосферу. Конструкторы тех лет придумывали самые изощренные способы, дабы сохранить тепло. Процессоры в современных серверных стойках тоже обогревают атмосферу, однако в данном случае конструкторы преследуют диаметрально противоположную цель - отвести от чипа как можно больше избыточного тепла.

Современные высокопроизводительные процессоры греются не хуже ламп накаливания; "топовые" модели производят до 130 Вт тепла, а порой и больше. Теперь представьте, что в одном сервере толщиной в один юнит (1,75 дюйма, около 4,4 см) может находиться два таких процессора, а юнитов в стойке - до сорока двух штук. Количеству выделяемых стойкой калорий позавидует иная тепловая пушка, обогревающая производственные помещения.

Но это не все трудности, встающие на пути инженеров-разработчиков высокопроизводительных систем. Вторая проблема - малый размер процессоров. Чтобы отвести тепло с небольшой площади радиатора, необходимо обдувать его очень большим количеством воздуха, а значит, вентиляторы должны быть высокопроизводительными и, как следствие, шумными.

Компания Cray - всемирно известная своими суперкомпьютерами, пошла по иному пути. Например, в модели ETA-10 была применена система охлаждения процессоров жидким азотом, что позволило вдвое повысить производительность. С эффективностью такой системы не поспоришь, однако ее цена заставляет задуматься даже военные ведомства. Так что применение этой технологии пока остается уделом сверхплотных и сверхпроизводительных систем стоимостью несколько сот тысяч и даже миллионов долларов.

Другой способ - закрытые кондиционированные шкафы, куда подается уже сильно охлажденный воздух. Но и здесь есть свои трудности. Во-первых, стоимость подобных шкафов и затраты на их эксплуатацию хоть и в разы меньше, чем у системы на азоте, тем не менее весьма высоки. Несмотря на кажущуюся простоту, приходится искать решения множества технологических задач, таких как равномерное распределение холодного воздуха в стойке, интенсивный отвод теплого воздуха, герметичность. Становится очень важным правильное распределение (не всегда совпадающее с желаемым) серверов внутри стойки и прочие тонкости. Да и КПД такой системы охлаждения тоже оказывается не на высоте: получается тройная передача тепловой энергии - сначала охлаждается фреон, который затем охлаждает воздух, а воздух, в свою очередь, охлаждает процессоры.

Специалисты российской компании Kraftway, изучив проблему, подумали: а зачем вообще нужен воздух в этой системе "теплых взаимоотношений"? И решили охлаждать процессоры сразу фреоном кондиционера.

Однако не все так просто. Подумайте, легко ли конфигурировать систему, насквозь пронизанную трубками с фреоном?! Поэтому было решено охлаждать не сами процессоры, которые располагаются в разных серверах по-разному, а сначала отводить тепло от раскаленных невероятной вычислительной мощностью ядер тепловыми трубками. То есть один ее конец располагается на самом процессоре, отбирая тепло, а другой - выводится на заднюю стенку сервера. Тем самым упрощается не только конструкция охладителя, но и процесс замены серверов: достаточно отвинтить тепловую трубку и вынуть корпус из стойки, не останавливая и не разбирая всю систему охлаждения.

Устройство тепловой трубки тоже заслуживает упоминания. Как известно, в них применяются самые разные теплоносители (вода, эфир, фреон). Однако большинство из них не обладают достаточной производительностью. Даже вода, несмотря на свою впечатляющую теплоемкость, не может справиться с той скоростью отвода тепла, которая требуется для современных процессоров. [Главная проблема - скорость циркуляции. Есть, однако, примеры и удачного применения воды. Компания Icebear System построила систему водяного охлаждения для стоек. Мне, правда, не приходилось встречать сообщений о ее реальных применениях. К тому же прототип этой системы был предназначен только для машин на базе процессоров Opteron]. Есть и другой момент: представьте, что трубка вдруг начнет протекать... это явно не обрадует электрические схемы материнской платы.

Применение фреона позволяет добиться необходимой производительности и безопасности. В случае протечки он тут же улетучивается, а теплоемкость его испарения сравнима с водой. Устроена трубка следующим образом. Жидкий фреон по капиллярной губке направляется к процессору, там, испаряясь, поднимается к "утюжкам" (рис. 2), прикрепленным к постоянно охлаждаемой металлической колонне (о ней будет рассказано ниже), в которых он охлаждается и, конденсируясь, стекает вниз в горизонтальную часть трубки, где благодаря капиллярному эффекту попадает обратно к ядру процессора. Далее - по кругу. Надежность такой замкнутой и герметичной системы очень высока.

Однако выведя процессорное тепло наружу, мы решили только половину задачи. Ведь его все равно нужно каким-то образом передать дальше, "на улицу". Тут и выступает на сцену вышеупомянутая колонна, к которой прикреплены горячие "утюжки" тепловых трубок. Несмотря на свой заурядный вид, она вовсе не является копией морозилки бытового холодильника.

Внутри этой прямоугольной тепловой колонны расположена медная трубка с массой мельчайших отверстий [Как утверждают разработчики, для их изготовления пришлось применить лазерное сверление, ведь диаметр отверстий не превышает нескольких десятков микрон], в которую специальная помпа подает хладагент [Используется опять же фреон, однако любителям природы не стоит волноваться, - применяется безопасная для озонового слоя марка хладона (HFC R142b)]. Протекая по трубке, фреон через отверстия разбрызгивается на внутреннюю поверхность колонны. Испаряясь на ней, он отбирает тепло у "утюжков" и уходит по трубке к основному компрессору [Вообще, "теплый конец" - это стандартный внешний блок сплит-системы кондиционирования воздуха], который может быть расположен далеко за пределами стойки (например, на улице вместе с радиатором охлаждения хладагента). Дополнительная помпа (рис. 1) понадобилась для того, чтобы регулировать нагрузку: стойка с серверами может быть заполнена только частично, и охлаждать колонну целиком - пустая трата энергии. С другой стороны, основной компрессор кондиционера работает на постоянных оборотах, и снижать их недопустимо, так как он может просто-напросто сгореть (можно вспомнить частые случаи перегорания компрессоров холодильников в сельской местности из-за пониженного напряжения). Поэтому оказалось рациональнее (хоть это немного и усложнило конструкцию) поставить дополнительную помпу непосредственно в стойке и управлять уже ее оборотами. Таким образом, инженеры продолжают бороться за общее повышение КПД системы.

Итак, получается двойная, а не тройная система охлаждения. Сначала нагревается непосредственно фреон, минуя воздушную стадию (нагревом корпуса трубок можно пренебречь), и уже он отдает тепло окружающему воздуху, причем далеко за пределами серверной стойки.

Если мы избавились от воздушного охлаждения процессоров, то нет необходимости в большом количестве вентиляторов внутри каждого сервера. По утверждению разработчика, для охлаждения всех оставшихся схем, включая жесткий диск и блок питания, достаточно лишь одного вентилятора на корпус. Это радикально снижает шум, что позволяет размещать такие стойки внутри рабочих комнат, не вынося их в специальные помещения.

Представители компании Kraftway очень неохотно отвечали на вопрос о возможной стоимости подобной системы. Ссылаясь на то, что пока существует только прототип и многие решения еще не вышли на стадию массового производства, говорить о конкретных расчетах слишком трудно. Однако мне удалось в приватной беседе выяснить, что ориентировочная стоимость в расчете на один процессор не должна превышать пятидесяти долларов (не забывайте, что речь идет о многопроцессорных системах с количеством чипов около сотни). Это, согласитесь, уже близко к цене обычных медных радиаторов и, разумеется, гораздо меньше стоимости систем на жидком азоте.

Похоже, Россия становится не только "родиной слонов" и великих комбинаторов, но и местом рождения остроумных технических решений для современных высокопроизводительных вычислительных систем. Возможно, недалек тот день, когда первые строчки знаменитого Top 500 будут занимать компьютеры, построенные именно у нас.

Из журнала "Компьютерра"

Прочитав название статьи, читатель может прийти в недоумение. Преобладающей тематикой сайта является моддинг. А тут рассказывают что-то про парокомпрессионные системы… Но, толкование самого термина — моддинг восходит к такому понятию как — модификация. Традиционно модификации касаются в основном внешнего вида компьютера. Но могут относиться и к конструкции. Одним из направлений модификаций является увеличения производительности компьютера. Этот вид моддинга неотделим от такого понятия как оверклокинг.

Оверклокинг(разгон) - повышение производительности компьютера путем повышения частоты работы процессора, видеокарты, памяти…

Не скрою, очень заманчиво купить младший в линейке процессор и разогнать его до, а может быть и выше уровня топового. Неплохая выходит экономия. Разница в цене почти в 800 вечнозеленых. А есть еще и видеокарта…

Но не так это все легко и красиво как кажется на первый взгляд. При работе процессора на повышенной частоте он выделяет большое количество тепла, которое необходимо отводить. А для устойчивой работы процессора на повышенных частотах, частенько приходится значительно увеличивать напряжение питания процессора. Что приводит к еще большему тепловыделению.

Конечно, имеются традиционные, воздушные системы охлаждения. Но с тепловыделением прилично разогнанного процессора они не всегда справляются. Есть жидкостные системы охлаждения. Их эффективность повыше воздушных. Но с экстремально разогнанным процессором не в силах справиться и они.

Как быть? Как с этим теплом бороться? Может быть изготовить холодильник для процессора? На первый взгляд безумная идея. Но нет. Несколько лет назад появились такие системы охлаждения, основанные на принципе фазового перехода(Direct Die).

На сегодняшний день это самые эффективные системы охлаждения, способные работать в режиме 247 и охлаждать до -60 градусов Цельсия. Существуют еще ряд способов заморозить процессор. Сухой лед, жидкий азот… Такие способы имеют серьезные недостатки, препятствующие широкому их применению. Основной недостаток — невозможность работать в режиме 247. Поэтому в рамках этой статьи они рассмотрены не будут. Опять же Direct Die системы самые экономичные.

Выпускается ряд серийных решений — Direct Die систем. Но они труднодоступны и цена на них в большинстве случаев просто фантастическая.

Поэтому многие энтузиасты предпочитают изготавливать подобные системы самостоятельно. Выходит ощутимо дешевле, и частенько случается что эффективнее.

Вот мы и подошли к теме статьи - изготовлению системы криогенного охлаждения для компьютера в домашних условиях. Целью написания статьи является освещение собственно процесса изготовления системы охлаждения на примерах устройств сделанных автором. Аспекты разгона с помощью этих систем рассматриваться не будут. Это слишком обширная тема и она выходит за рамки данной статьи.

Перед тем как идти дальше нужно сказать пару обязательных фраз. Несмотря на то, что статья содержит подробную информацию по самостоятельному изготовлению системы охлаждения основанную на принципе фазового перехода, она не является руководством к действию. Автор не несет ответственности за поврежденное вами оборудование и возможный вред, причиненный вашему здоровью. Все решения вы принимаете самостоятельно и действуете на свой страх и риск.

Статья разбита на части. Название каждой части это вопрос, который может возникнуть, если вы все-таки решитесь пойти по этому пути. А ниже я постараюсь дать подробнейший ответ на поставленный вопрос. Поехали?

1. Для чего это надо?

Ответ прост. Вы получаете возможность купить младшую модель процессора и разогнать ее до уровня топовой. А возможно и выше. Разница в цене младшего и старшего процессора такова, что ваша система довольно быстро себя оправдает.

Но все это звучит как-то приземленно и меркантильно. А что если поставить вопрос немного иначе. Сколько ваших друзей могут похвастаться криогенной системой охлаждения компьютера?

Достоинства системы:

1.Разгон сверх традиционных методов. На данном этапе это дополнительные 500Мгц сверх максимального разгона "на воздухе"

2.Уровень шума издаваемого системой не выше уровня шума высокопроизводительного воздушного кулера. А случается и ниже.

Недостатки системы:

1.Цена фреоновой системы охлаждения на много выше чем воздушных или жыдкостных куллеров.

2.Сложность изготовления.

3.Необходимость приобретения спец инструмента.

Какие температуры реально получить, используя однокаскадную систему фреонового охлаждения?

Температуры, которые можно получить это от -35 °Сдо -60 °С, в зависимости от мощности компрессора и точности регулировки системы. При температурах

60°С и ниже начинает замерзать масло в капилляре. Механизм компрессора расположен в закрытом герметичном корпусе наполненным на определенный уровень маслом. Компрессор работает, разбрызгивает при этом масло и этим маслом сам себя смазывает и охлаждает. Лишнее масло стекает в низ корпуса. И выдает компрессор масляно-фреоновую смесь. Фреон вместе с маслом циркулирует по всей системе. Температура замерзания масла как раз находится в пределах -60градусов. Это масло и начинает замерзать в капилляре. Установка начинает работать циклически. Минус 60, замерзание масла, капилляр забивается, система перестает работать, температура повышается, капилляр оттаивает, и система начинает работать снова.

2. Как это работает?

Система фазового перехода состоит из замкнутого контура с набором стандартных элементов. Компрессор, конденсор(конденсатор), фильтр, капилляр, испаритель. Компрессор нагнетает газообразный фреон в конденсатор. Там он охлаждается и переходит в жидкую фазу. При этом выделяется тепло, которое рассеивает конденсатор. Далее стоит фильтр для предотвращения попадания в капилляр влаги и случайного мусора, который может закупорить его.

После фильтра фреон поступает в капилляр (дросселирующий элемент). Капилляр разделяет контур системы на две зоны. Высокого давления (движется жидкий фреон) и низкого давления (движется газообразный фреон). Пройдя через капилляр, жидкий фреон попадает в область низкого давления (испаритель) и начать кипеть. При этом, поглощается большое количество тепла. Подача фреона через капиллярную трубку должна быть точно дозированна. Фреона должно поступать строго определенное количество, необходимое для охлаждения. При излишней подаче, фреон не будет выкипать полностью в испарителе и может по всасывающей трубке попасть в компрессор, что может привести к выходу его из строя. При недостаточной подаче - недостаточная холодильная мощность.

3.Из чего все это собрать и сколько это стоит? Какие потребуются инструменты и расходные материалы?

Первый вопрос, который обычно возникает у среднестатистического читателя - сколько стоит фреонка? Вопрос на первый взгляд простой и обоснованный. Но сродни вопросу - а сколько стоит автомобиль? Тут же возникает масса встречных вопросов. А какой автомобиль? Грузовой или легковой? Отечественный или иномарка? Бизнес класс или представительский?

Так и с парокомпрессионной системой. На вопрос — сколько стоит, нельзя сразу дать однозначный ответ. А нужно сначала определиться с целью, для которой будет делаться система. Подобрать комплектующие и инструмент. Сложить их цену "столбиком". Только тогда мы сможем получить ответ на этот животрепещущий вопрос. Идем дальше.

Комплектующие. Материалы

1. Компрессор. Сердце системы. Новый стоит от 35$. Высокопроизводительный, известной марки 170-300$.

Перед тем как выбирать компрессор, определимся сначала с количеством испарителей. Фреоновую систему можно собрать с одним и двумя испарителями. Один испаритель на центральный процессор, а другой на графический процессор видеокарты. Вариант с двумя испарителями имеет серьезные недостатки. В такой системе фреон идущий из конденсора делится на два потока и по двум капиллярам идет к двум испарителям. Допустим, вы смогли сделать так, что фреон равномерно распределяется между двумя испарителями.

Если тепловая нагрузка на обоих испарителях одинакова или близка, то ничего страшного не произойдет. Предположим, произойдет так, что нагрузка на центральный процессор велика, а на графический нет. Большее количество тепла, отдаваемое центральным процессором заставит более активно кипеть фреон в испарителе. А в испарителе графического процессора это будет происходить в меньшей степени. Давление в первом испарителе будет больше. А во втором меньше. В результате фреон будет поступать в испаритель с меньшим давлением. То есть в менее нагруженный. И выходит, что в менее нагруженный испаритель поступает большее количество фреона. А в более нагруженный меньше. Ситуация начинает все более и более усугубляться. Получается, что ненагруженный испаритель будет намного холоднее нагруженного! И эта разница может достигать значительной величины. В результате процессор перегревается.

Вывод система с двумя испарителями хорошо подходит только для систем с одинаковой тепловой нагрузкой. Например, для двух видеокарт работающих в режиме SLI. И опасна при работе на процессор и видеокарту.

Остановимся пока на системе с одним испарителем.

Выбираем тип фреона.

А теперь нужно определиться с фреоном, который будем использовать в системе. Оптимальным со всех сторон является фреон R-22. Это самый дешевый и доступный из всех видов фреонов. R-22 кипит при атмосферном давлении при температуре -41. Этот фреон еще хорош тем, что он совместим по маслу с компрессорами, работающими на фреонах R-12 и R-404.

Другими словами этим фреоном можно заправлять компрессоры, рассчитанные на эксплуатацию с R-12 и R-404 фреонами. Компрессоры на R-12 можно добыть из старого ненужного холодильника. Но они заведомо имеют небольшую мощность 70-170 Вт при -15. И систему приемлимой производительности изготовить из такого компрессора не удастся.

Вообще один из самых часто задаваемых вопросов - почему бы просто не поместить компьютер в морозилку? Ответ прост. Это не даст такого прироста производительности. Этим способом не удастся получить достаточно низкую температуру на процессоре. И главное - морозильники не рассчитаны на такой уровень хладопроизводительности. И поэтому просто выйдут из строя через небольшой промежуток времени.

Можно купить компрессор, рассчитанный на работу с R-404 фреоном. Эти компрессоры работают с более высоким давлением, чем те, что рассчитаны на работу с 22-ым. Такой компрессор заправлен синтетическим маслом, совместимым практически со всеми газами и смесями, теоретически в нем применены более качественные комплектующие. Но и стоит он дороже компрессора R-22.

Конечно используя компрессор рассчитанный на 404-ый фреон, да еще и заправив систему 404-м можно получить более низкие температуры, чем используя 22-ой. Но 404-ый стоит в несколько раз дороже 22-го.

Для построения системы необходим поршневой, герметичный компрессор. Компрессоры выпускаются двух видов. Для монтажа методом пайки и развальцовки. Удобнее компрессоры, рассчитанные под пайку.

Выбираем мощность и марку компрессора.

А теперь определимся с мощностью компрессора. Но для этого сначала прикинем тепловыделение процессора. Современные процессоры при работе выделяют 70-110 Вт тепла. При серьезном разгоне с повышением напряжения питания эта цифра возрастает до 200 - 250 Вт.

Для информации приведу характеристики некоторых серийных систем:

VapoChill Extreme Edition XE II имеет следующие характеристики - при нагрузке 180Вт температура испарителя -18 , без нагрузки -44

VapoChill LightSpeed ™ — при нагрузке 200Вт температура испарителя -33 , без нагрузки -50

Последняя является одной из самых мощных выпускаемых на данный момент систем. Итак, выбирать вам. Помощнее и подороже. Будет немного более шумно но и разгон повыше. Или подешевле и попроще.

Наилучшими для изготовления Direct Die системы, считаются компрессоры Danfoss. Все серийные решения выпускаются именно на компрессорах этой фирмы. На втором месте идут компрессоры Aspera. Они же считаются самыми бесшумными. Эти две марки являются самыми популярными среди фанатов фреонового охлаждения всего мира.

Еще немного о мощности. С одной стороны лучше выбрать более мощный компрессор, у него более высокая хладопроизводительность, с его помощью можно получить более низкую температуру под более мощной нагрузкой. Он меньше греется. Но с другой стороны - чем мощнее компрессор, тем сильнее он шумит. Необходимо выбрать для себя оптимальное соотношение между шумом и производительностью. Нужно сразу определиться, что вы хотите. Более мощную, но шумную систему. Или разумно достаточную, но более тихую.

Основной характеристикой компрессора является хладопроизводительность. Она указывается в Ваттах при температуре -25. Следует учитывать, что при температуре -40 эта цифра уменьшится почти вдвое.

Выбирать будем из учета 150-250Вт на испаритель. А при -25или -40 нужно решать самому.

Приведу марки популярных компрессоров, мощностью близкой к выбранной, работающих на R-22. Есть и аналогичные на R 404.

215Вт при -25

Aspera E 2134Е,

300 Вт при -25

450Вт при -25

550Вт при -25

325Вт при -25

415Вт при-25

Danfoss SC15CМ, 510Вт при -25

Danfoss SC18CМ,

585Вт при -25

Скажу только, что компрессоры «младших» марок в списке практически не шумят. А «старшие» шумят ощутимо.

Естественно Aspera и Danfoss не единственные в мире, и свет клином на них не сошелся. Есть еще и Electrolux, Tecumseh, Turk Elektrik, Panasonic и еще Холодмаш. Это тоже очень неплохие агрегаты, хотя «холодмаш» довольно шумные. И, в конце концов, можно поступить так, придти в магазин и попросить продавца порекомендовать тихий компрессор хладопроизводительностью 200-500Вт при температуре -25

Для более получения более подробной информации можно посетить сайты производителей компрессоров. Или посмотреть ссылки приведенные в конце статьи.

Определяем где у компрессора нагнетающяя трубка, а где всасывающя.

Мы выбрали компрессор. Теперь рассмотрим его поближе. Обтекаемый черный корпус на основании, из которого выходят три трубки. Обычно это три трубки. Бывает у компрессоров большой мощности пять. Две дополнительные - масляное охлаждение. Но мы рассматривать этот случай не будем, ввиду его большой редкости.

Две трубки большего диаметра - всасывающие. Одна диаметром поменьше - нагнетающая. На одну из всасывающих трубок (на какую удобнее) припаивается клапан Шредера, для заправки системы. К другой припаивается всасывающая трубка идущая от испарителя. К более тонкой (нагнетающей), припаивается трубка идущая к конденсору. К ней же, через тройник обычно припаивают клапан Шредера, для контроля давления на линии нагнетания.

Как подключить компрессор к электрической сети. Электрические схемы включения компрессоров

Если вы купили новый компрессор, то проблем с подключением его к электросети у вас не будет. Снимаете крышку пускозащитного реле и смотрите на ее обратную сторону. На ней нарисована схема подключения. Для подключения компрессора подойдет любой провод сечением не менее 0,75 квадратных миллиметров.

Но если вы где-то раздобыли бывший в употреблении компрессор, у вас могут возникнуть сложности с подключением. Приведу несколько типовых схем включения компрессоров. Реле и конденсаторы можно приобрести в магазинах торгующих холодильной техникой.

Как проверить имеющийся в наличии БУ компрессор

Предположим у вас есть бывший в употреблении компрессор. Но вы не знаете, исправен он или нет. Это можно легко проверить. Для этого понадобиться прибор — мультиметр.

Сначала снимаем крышку пускозащитного реле и само реле. Потом замеряем сопротивление между выходящими из компрессора контактами. Оно должно быть примерно таким: между правым и левым контактом — 30 Ом; между правым и верхним — 15 Ом; между левым и верхним — 20 Ом.

Если полученные цифры сильно отличаются от указанных, то можно предположить, что компрессор неисправен. Точнее определить неисправность, можно только замерив потребляемый компрессором ток. Если на какой-нибудь паре контактов прибор покажет обрыв, то компрессор неисправен

Затем замеряем сопротивление между контактами и кожухом компрессора. Для этого подсоединяем один щуп прибора к каждому из контактов, а другой щуп к медной части одного из штуцеров мотора.

Прибор должен показывать обрыв. Если прибор покажет какое-нибудь сопротивление — компрессор неисправен.

Если неисправностей электрической части компрессора обнаружено не было, проверяем его на давление. Для этого подключаем к штуцеру нагнетания имитатор (шланг с отводом из капиллярной трубки), подключаем к имитатору манометр, запускаем компрессор и замеряем давление по манометру.

Если манометр показал давление больше 6 атмосфер, и давление продолжает повышаться, немедленно отключите компрессор. Иначе можете повредить манометр. Это значит, что компрессор находиться в очень хорошем состоянии.

Если сопротивление обмоток не отличается от нормы, а компрессор не запускается, и есть подозрение на неисправность пускозащитного реле, можно попробовать запустить мотор "напрямую", т.е. минуя реле.

ВНИМАНИЕ! Напряжение 220В опасно для жизни. Если Вы не имеете опыта работы с электрическими цепями, то эту проверку лучше доверить специалисту.

Изготавливаем шнур для подключения мотора и подключаем через него компрессор, как показано на схеме:

Выключатель можно не ставить, но тогда после запуска мотора необходимо отсоединить провод от пусковой обмотки. На компрессорах горизонтального типа левый контакт — общий, правый верхний — рабочая обмотка, правый нижний — пусковая обмотка.

2. Конденсатор — радиатор с вентилятором. Один конденсатор, без вентилятора от 35$. Можно купить в сборе с вентилятором. Можно и без вентилятора и придумать что-то самому.

Какой использовать конденсатор?

Конденсор рациональнее купить готовый. Но можно сделать и самостоятельно. Простейший конденсор это 7-15 метров медной трубки свитой в спираль с шагом не менее 4мм. Диаметр спирали подбирается по габаритам платформы, на которой будет производиться монтаж системы. Но такой конденсатор не отличается высокой эффективностью из-за небольшой площади поверхности. Повысить эффективность работы такого конденсатора можно, припаяв к нему дополнительные ребра. Использовать радиаторы от автомобильных печек опасно. Давление в системе будет в пределах 10-14 атмосфер. И далеко не каждая автопечка может справиться с такой нагрузкой.

Главной характеристикой конденсатора является мощность. С конденсатором дело обстоит так же как с компрессором, чем мощность выше, тем лучше. Но есть одно правило, она не должна быть меньше мощности компрессора. Лучше если она будет превышать мощность компрессора раза в полтора-два. Конденсатор должен обязательно охлаждаться вентилятором. Можно купить конденсатор в сборе с вентилятором. А можно приспособить для охлаждения конденсатора корпусные вентиляторы от компьютера. Но тогда для них нужен дополнительный блок питания на 12 вольт мощностью, не менее суммарной мощности вентиляторов, примененных для обдува конденсатора.

3. Фильтр-осушитель. Самый простой стоит от 3,5 $. Есть и дороже. Покупать фильтр дороже 15$, на мой взгляд, ни к чему.

Какой использовать фильтр?

Фильтр служит для фильтрации фреона от нежелательных примесей. Случайно попавшего мусора - стружки, окалины. Иначе все это может забить капилляр, и система будет неработоспособной. Фильтр также поглощает влагу, случайно попавшую в систему. Необходим для надежной работы системы.

Конструктивно он выполнен в виде медного баллона с отверстиями на концах. Внутри фильтра с одного конца установлена решётка, с другого тончайшая сетка. Пространство между ними заполняется веществом, интенсивно поглощающим воду. Обычно это гранулированный цеолит или силикагель. Конец фильтра с решёткой является входом, конец с сеткой — выходом. Выход фильтра обычно имеет отверстие под капиллярную трубку, если оба отверстия фильтра одинаковы, загляните внутрь него, часть с сеткой будет выходом.

При монтаже нужно быть внимательным и не перепутать направление установки фильтра. Фильтр обычно выбирают объемом от 15 кубических сантиметров.

4. Капилляр. Самый ходовой типоразмер, это капилляр с внутренним диаметром 0,8мм. Цена 1метра - около 1$

Точную длину капилляра для самодельной системы рассчитать невозможно. Ее нужно подбирать экспериментальным путем, что является частью настройки системы. Исходя из таблицы, берем капилляр с запасом по длине, для последующей регулировки. Рекомендуемый запас 0,5-1 метр.

Потом в процессе регулировки отрезают капилляр небольшими кусочками. И перепаивают. После заправляют систему по новой. И смотрят, насколько возросла хладопроизводительность. Потом процедуру повторяют.

Но если вам не хочется возиться с настройкой такого уровня, можно взять длину капилляра точно по таблице. И настроить систему только количеством заправляемого фреона.

Газ (фреон)

Мощность испарителя (Ватт)

0.65мм

0.7мм

0.8мм

0.26 дюйма

0.28 дюйма

0.31 дюйма

R404A/R507

R22/R290

Таблица составлена Гари Ллойдом (Gary Lloyd)

5. Трубки.

Для соединения между собой комплектующих системы необходима медные трубки с внешним диаметром 6мм, 8мм, 10мм. Цена 1 метра трубки от 1,5$

Какие использовать трубки для монтажа системы?

Для монтажа системы используют медные трубки диаметром равным диаметру патрубков компрессора. Но на нагнетание можно поставить и меньший диаметр. Обычно монтаж делают трубкой диаметром 6мм. Десятимиллиметровую можно использовать в качестве всасывающей. Из 8мм делают переходы с 6мм на 10мм.

По принципу действия напоминают клапан в газовой зажигалке. Потребуется две штуки. Необходимы для заправки и контроля давления в системе. Впаиваются в контура низкого и высокого давления. Примерно 1,5$ штука. Нужны для заправки системы и контроля давления в системе.

7. Уголки, тройники медные, под диаметр трубок.

Пригодятся для пайки клапанов Шредера и для выполнения резких поворотов.

8. Испаритель.

Единственная часть, которая практически не выпускается промышленностью. Испаритель - самая проблематичная часть. Придется или заказывать у знакомых на заводе, или делать самому. На заказ испаритель будет стоить от 35$.

Где взять испаритель?

Наилучшим и пожалуй единственным материалом для испарителя является медь. Испаритель, это емкость с возможно большей внутренней площадью поверхности. В нем кипит фреон, поглощая тепло, вырабатываемое процессором. Лучшие конструкции испарителей можно и нужно посмотреть на сайте www.xtremesystems.org

Есть несколько вариантов самостоятельного изготовления испарителя. Первый вариант. Приобрести обычный воздушный кулер, радиатор которого изготовлен из меди. И запаять его в коробку из листовой меди. Я сделал два подобных испарителя из кулера Volcano7+. Радиатор я распилил на две части по линии крепежной клипсы. Толщина листа меди, из которой нужно сделать коробку должна быть не менее 2-х миллиметров. Более тонкую коробку раздувает давлением в системе.

Есть еще вариант. Для его воплощения необходимо несколько брусков меди толщиной 10-14мм и размерами 50на 50 мм. С помощью электродрели, начиная от центра квадрата, начинаем насверливать отверстия. Как можно ближе друг к другу. Что бы получилась расходящаяся спираль. Отверстия должны соединяться друг с другом. Сверлить нужно на такую глубину, что бы осталось 4-6мм до нижней грани.

Если у вас брусок только один, тогда в центр спирали припаиваем капилляр. А на выходе спирали всасывающую трубку и накрываем все это дело медной крышкой и все хорошенько пропаиваем. Если найдется еще брусок. То делаем из него второй этаж. Что бы фреон пройдя по спирали первого, через отверстие попадал на второй этаж и опять по спирали попадал в центр второго бруска. И уже сюда припаиваем капилляр и всасывающею трубку. Двухэтажный испаритель будет работать более эффективно, чем одноэтажный. Более двух этажей делать не к чему. Прироста производительности почти не будет. Диаметр сверла 3-5мм.

9. Всасывающая трубка.

Можно обойтись медной трубкой диаметром 10мм. Или купить газовую подводку из гофрированной нержавеющей стали. Она стоит от 10$, в зависимости от длинны.

Какую использовать всасывающею трубку, и где ее взять?

Всасывающая трубка, это трубка идущая от испарителя к компрессору. Она должна быть по возможности гибкой. Вам же придется монтировать испаритель на процессор? И гибкая мягкая трубка намного облегчит эту задачу.

Можно в качестве всасывающей трубки использовать медную трубку диаметром 10мм. Она достаточно гибкая и может работать на скручивание. Иногда для установки испарителя на процессор его необходимо немного повернуть и медная трубка позволит это сделать. Но у нее есть и недостатки. Все-таки она недостаточно гибкая и от многократных перегибов может сломаться.

Этих недостатков лишена трубка сделанная из газовой подводки. Это гофрированная трубка из тонкой нержавеющей стали. Выдерживает давление в 16 атмосфер. Но и у нее есть недостатки. Для ее пайки необходим специальный флюс. Можно конечно припаять штуцеры к системе и прикрутить подводку через фторопластовые прокладки. Но штуцера обычно латунные, а для их пайки тоже необходим флюс. И еще один недостаток есть у такой трубки. Она не работает на скручивание.

Нельзя в качестве всасывающей трубки использовать резиновые шланги, газовые шланги. Даже если они выдержат давление в системе, то фреон утекает сквозь резину. И через какое то время придется дозаправлять систему.

10.Вакуумный насос для вакуумирования системы.

Желателен, но необязателен. Можно вместо вакуумного насоса использовать еще один компрессор. Можно сделать так, что компрессор системы будет вакуумировать сам себя. А можно обойтись совсем без вакуумирования. Как это сделать на практике будет изложено в главе о заправке системы. На фотографии компрессор, немного доработанный для использования в качестве вакуумного насоса.

11. Манометрическая станция.

Цена от 65$. Необходима для заправки и контроля давления в системе. Очень удобна при заправке и регулировке системы. Можно конечно обойтись и краном с манометром. Он стоит уже от 17$. А можно просто впаять в систему манометры. Они по отдельности еще дешевле. А можно обойтись вообще без манометров. Но в этом случае заправка будет происходить «на глазок», что естественно не является сильной стороной метода.

12.Фреон для заправки.

Обычно это самый дешевый и доступный фреон марки R22. Дешевый и доступный не значит плохой. Он идеально подходит самодельщику. Баллон 13,5кг. - 54$. Для заправки системы конечно столько не надо. Обычный расход на одну заправку, в зависимости от внутреннего объема, системы от 30 до 300 грамм. Но меньшей расфасовки я не видел. Можно конечно обратиться в сервисный центр по ремонту холодильников и кондиционеров и договориться с мастерами о заправке там. Обойдется такая процедура от 10$. Но тогда о регулировке можно забыть. Да и не будет того адреналина, который буквально переполняет при первой заправке.

14. Платформа для монтажа системы.

Металлическая или любая другая площадка, способная выдержать вес компрессора и других комплектующих. Или корпус, в который вы собираетесь все это поместить.

Инструмент

Для монтажа системы необходим инструмент, как обычный, так и специальный. Перечислю необходимый инструмент и цены на него. Цены взяты из прайсов нескольких фирм и усреднены. Приведены для того, что бы можно было иметь представление о материальных затратах ожидающих человека, собравшегося двигаться по этому пути.

1. Инструмент для резки медных трубок.

Лучше труборез как на фотографии. Он режет трубки от 1/8 до 5/8 дюйма, другими словами от 3мм и до 15мм. Им можно и надрезать, а потом обломить капилляр. И стоит недорого, от 4,5$.

Можно резать и ножовкой по металлу. Но в этом случае велика вероятность попадания стружки в систему с непредсказуемыми результатами. В случае резки ножовкой нужно быть внимательным и тщательно удалять стружку из внутренних полостей трубок.

2. Горелка с газом.

Можно купить специализированную с баллоном МАРР газа. А можно приобрести и что-то подешевле. Горелка необходима для пайки трубок соединяющих детали системы. В системе высокое давление, порядка 7-14 атмосфер и другой метод пайки, например паяльником и обычным оловянно-свинцовым припоем непригоден.

Припой к горелке.

Вполне подойдет недорогой, с 5-6 процентным содержанием серебра. Цены примерно такие. Горелка - 60$. Баллон МАРР газа - 20$. Но можно найти горелку и значительно дешевле. Например, на радиорынке. Припой 5-6% серебра, один пруток 0,8$. Для сборки системы обычно требуется 3-5 прутков.

3. Необходимы так же обычные инструменты.

Такие как плоскогубцы, кусачки, нож, напильник, отвертки… Нелишним будет иметь дрель со свёрлами.

По вышеприведенным ценам можно посчитать, во что примерно обойдется система. Обычно, если не покупать очень дорогой компрессор, можно вполне уложиться в 300$. В этом случае вы получите довольно тихую, домашнюю «фреонку», не отличающеюся выдающимися характеристиками. Под нагрузкой на этой системе реально получить -25на испарителе. Если же вы планируете собрать более серьезное устройство с более низкими температурами, то придется потратиться уже на 400-500$. В основном цена вырастает за счет стоимости более мощного компрессора. Но это уже будет устройство, превосходящее по своим характеристикам лучшие серийные экземпляры.

4. Рекомендации по компоновке системы. Оформление системы. Сборка и пайка.

Монтируют систему на платформе, лучше металлической. Удобнее будет при пайке, не обгорит. Но можно и из ДСП или толстой фанеры. Но тогда под спаиваемые детали лучше подкладывать лист металла. Неплохо если платформа будет иметь коробчатый каркас. Очень удобно привернуть к ней мебельные колеса. Конструкция получится тяжелой, и данные рекомендации значительно облегчат ее перемещения. Классическая конструкция фреоновой системы, это прямоугольный блок, сверху которого выходит испаритель. На такую конструкцию можно поставить стандартный компьютерный корпус. Придется только в его дне прорезать отверстие для испарителя.

А теперь рекомендации по расположению элементов системы. Конденсор устанавливаем так, что бы вентилятор на нем втягивал через него воздух и обдувал компрессор. Это нужно для дополнительного охлаждения компрессора. В процессе работы компрессор ощутимо нагревается. Нормальная рабочая температура компрессора 55-70 градусов.

Компрессор крепится к платформе через резиновые амортизаторы. Делается это для предотвращения передачи вибраций работающего компрессора корпусу. У компрессора обычно имеется три трубки. Две большего диаметра - всасывающие. Одна диаметром поменьше - нагнетающая. На одну из всасывающих трубок(на какую удобнее) припаивается клапан Шредера, для заправки системы. К другой припаивается всасывающая трубка идущая от испарителя. К более тонкой - нагнетающей, припаивается трубка, идущая к конденсору. В разрыв этой трубки я припаял тройник, а к нему клапан Шредера, для вакуумирования и последующего контроля давления в системе.

Вход конденсора - его верхняя трубка. Выход - нижняя. Это делается для облегчения стекания сконденсировавшегося фреона.

К выходу конденсатора припаиваем фильтр. Фильтр ставиться так, что бы выход фильтра(где припаян капилляр) был ниже входа. Делается это для предотвращения попадания пузырьков несконденсировавшегося фреона в капилляр. Пузырьки снижают производительность системы.

Капиллярную трубку помещают внутри отсасывающей трубки для понижения температуры хладагента в капиллярной трубке.

Это повышает эффективность охлаждения. Так же такое расположение способствует докипанию фреона на линии всасывания. Помогает исключить попадание жидкого фреона в компрессор, что может привести к выходу его из строя. При использовании в качестве всасывающей трубки газовой подводки капилляр необходимо помещать в трубку изогнутым в виде синусоиды. Дело в том, что от давления длинна такой трубки увеличивается, и она может порвать капилляр. Капилляр не «убравшийся» во всасывающею трубку скручивается в бухточку и крепится в любом удобном месте.

Испаритель к всасывающей трубке удобнее всего прикручивать, а не припаивать. Для этого к испарителю можно припаять латунный штуцер с полудюймовой резьбой.

Такая же резьба на газовой подводке. Прикручивать испаритель нужно через фторопластовую прокладку. Можно использовать специальные переходы под развальцовку. Но тогда понадобиться покупать дополнительный инструмент.

В этом случае конструкцию испарителя надо предусмотреть такую, что бы капилляр не припаивался, а вставлялся в испаритель. Разъемное соединение удобно тем, что потом всегда можно заменить испаритель.

Перед крепежом деталей фреоновой системы лучше всего расставить их на платформе и прикинуть, как пойдут соединительные трубки. Можно смоделировать их тонкой проволокой. Согнуть ее, так как потом пойдут реальные соединения. Потом по этим заготовкам будет легче и точнее нарезать и выгнуть необходимые отрезки труб. Трубки диаметром до 10мм включительно хорошо гнуться руками. И, как правило, можно обойтись без трубогиба.

Нужно продумать последовательность пайки. Иначе может получиться, что потом, что бы запаять какое-то соединение, возникнет необходимость разрезать другое.

Как уменьшить шум фреоновой системы охлаждения?

Основным источником шума работающей Direct Die системы охлаждения является компрессор. При работе он ощутимо вибрирует, и эти вибрации передаются корпусу системы. В результате шум усиливается. Не спасают ситуацию и резиновые амортизаторы, на которых крепится компрессор. Так же вибрации компрессора через нагнетающую трубку передаются конденсатору, и он тоже начинает вибрировать.

Что бы уменьшить это явление, корпус можно сделать из толстого гасящего вибрацию материала. Например ДСП. Для уменьшения передачи вибраций от компрессора к корпусу можно закрепить компрессор на небольшое основание, которое в свою очередь закрепить через дополнительные амортизаторы к основному корпусу. Некоторые даже подвешивают компрессор на резиновых кольцах.

Для снижения вибраций передаваемых компрессором конденсатору нагнетающую трубку можно свить в спираль.

А боковые стенки конденсатора оклеить вибропоглощающим материалом. Конденсатор так же можно прикрепить к основанию через прокладки. Будет не лишним и внутренние части корпуса оклеить таким материалом.

В качестве вибропоглощающего материала можно применить автомобильную шумоизоляцию. Или пенофол. Пенофол пористый полимерный материал, применяется для утепления и шумоизоляции систем вентиляции. Приклеивают его 88-ым клеем или на двусторонний скотч.

Внутри корпуса можно предусмотреть шумопоглощающие экраны. Они должны быть оклеены очень рыхлым материалом. Например, толстым синтепоном.

Для уменьшения передачи вибраций от вентиляторов к конденсатору, диффузор, к которому прикреплены вентиляторы тоже неплохо закрепить через вибропоглощяющие прокладки.

Шумоизоляция производится после сборки и пайки системы. Иначе горелкой ее легко повредить.

Как паять? Сборка системы.

Для пайки хорошо подходит горелка с МААР газом. Но горелка и баллоны с газом к ней, довольно дороги. Можно приобрести инструмент и попроще. Большой ассортимент таких устройств можно увидеть на радиорынке. Приобрести горелку там выйдет намного дешевле.

Горелкой нагреваем спаиваемые детали, они почти сразу приобретают ярко желтый цвет. Продолжаем нагрев до темно красного свечения. Потом вводим в факел горелки пруток припоя и проводим им по месту пайки. Припой расплавляется и растекается по спаиваемым деталям. Если припой прилипает и остается комком, значит спаиваемые детали недостаточно разогреты.

Для увеличения прочности спаиваемых соединений детали должны немного входить друг в друга. Например, для спаивания трубок одинакового диаметра, одну из трубок лучше развальцевать.

Или применить переход из трубки большего диаметра. Если трубки сильно отличаются по диаметру, то большую трубку нужно обжать пассатижами.

МАРР газ имеет более высокую температуру горения, чем пропан. Поэтому им быстрее и легче паять. Припой плавиться при температуре 700С-800 градусов в зависимости от состава. Температура плавления меди близка к 1080 градусам. Следует быть аккуратным и не перегреть место пайки. Тонкие трубки легко могут расплавиться. Особенно нужно быть внимательным при пайке капилляра. При такой пайке нужно в основном нагревать сам фильтр. На глаз точкой плавления меди является яркое, желто-белое свечение.

Соединения медь-медь паяются без флюса. Если же вам необходимо припаять латунный штуцер или всасывающую трубку из нержавеющей стали, то придется приобрести специальный флюс. Я паяю такие соединения флюсом Ultra flux. Но можно приобрести в специализированном магазине и другой, подобный.

При такой пайке флюс наносится на соединение, а затем пайка производится так, как описано выше.

Спаиваемые детали необходимо предварительно зафиксировать. Пайка производиться двумя руками и придержать сползающею в процессе пайки деталь будет нечем. Разве что… Ну нет это уже чересчур. Лучше зафиксировать проволокой, тисками, струбциной. Что найдется.

Один небольшой совет. Раньше я паял клапаны шредера, не разбирая их. Но когда клапан паяется долго, или патрубок у него короткий, из него лучше выкрутить нутро. В нем есть полимерная прокладка, которая может подгореть от пайки и клапан, потом будет травить. Выкручивается клапан колпачком. У него есть для этого штырек с прорезью.

А теперь пара слов о пайке испарителя. Испаритель обычно имеет довольно большую массу. И поэтому прогреть его одной горелкой проблематично. Да и расход газа будет велик. Поэтому лучше всего паять испаритель на включенной газовой конфорке. Ставим на нее испаритель, поджигаем газ и ждем минут 10. Испаритель прогреется и можно приступать к пайке обычным способом.

Шов пайки должен быть ровным, гладким без каверн и раковин. Это потенциальное место протечки.

Испарители после пайки для полной уверенности лучше всего опрессовать. Сделать это можно при помощи старого компрессора. Компрессор для этого придется немного модернизировать. После модернизации такой компрессор можно использовать и для опрессовки и как вакуумный насос. Доработка сводится к тому, что надо припаять по клапану Шредера на линии нагнетания и всасывания. Вторую трубку на всасывание нужно заглушить. Шредер на нагнетание и используется для опрессовки испарителей. На фотографии показано еще одно приспособление это клапан и переход. Сделав такое приспособление можно легко подсоединить любой испаритель к компрессору.

Еще интересный момент. Если вы сами спаяли испаритель. Установили его на фреонку. Опрессовали фреоном из баллона и он держит давление, то это еще ничего не значит. Высокое давление при такой опрессовке не получить.

Далее вы заправляете фреонку, но в испарителе опять же высокого давления не будет. Испаритель находится в контуре низкого давления и при работе системы давление в нем находится в пределах 0,5-1 атмосферы. И испаритель может прекрасно держать такое давление.

После заправки и регулировки системы вы выключаете систему. После выключения давление в контуре низкого и высокого давления начинает выравниваться. Давление в испарителе начинает расти. И поднимается примерно до 7-10 атмосфер. При некачественной пайке испаритель может дать течь. Причем через некоторое время.

Для избежания такого конфуза лучше перед установкой в систему опрессовать испаритель. Для этого к трубке испарителя либо припаивается клапан Шредера, либо присоединяется методом развальцовки. Потом через манометрическую станцию испаритель подключается к линии нагнетания модернизированного компрессора. Из клапана Шредера на линии всасывания выкручивается механизм. Делается это для того, чтобы открыть клапан. Компрессор включается. Контролируя давление по манометру высокого давления, нагнетаем в испаритель воздух до 12-15атмосфер. Выключаем компрессор и опускаем испаритель в емкость с водой. Если утечка присутствует, вы увидите пузырьки воздуха, вырывающиеся из проблемных мест.

ВНИМАНИЕ:

Нужно быть очень осторожным и не превышать указанное давление. Можно повредить манометр. Возможно, что в случае некачественной пайки может разорвать испаритель.

Несколько слов о технике безопасности. Работайте в хорошо проветриваемом помещении. Пайка должна проводится на негорючем основании. Например, листе металла. При работе с горелкой обязательно наличие ведра с водой рядом с местом работы. Лучше пару раз по запарке опрокинуть его, чем потом в случае пожара метаться в поисках, чем залить пламя. Неплохо иметь и кусок негорючей ткани. Например, брезента. Для того, что бы накрыть им случайно загоревшейся предмет.

Во время пайки детали быстро нагреваются. Но долго остывают.

При пайке нужно внимательно следить за направлением пламени горелки, даже на расстоянии около метра занавеска может загореться. Работать надо обязательно в негорючих перчатках. И главное внимание, и еще раз внимание.

Установка вентиляторов.

Система собрана, спаяна. Пора устанавливать вентиляторы. Если вы приобрели конденсатор в комплекте с вентилятором, то никаких проблем возникнуть не должно. Другое дело, если вы решили использовать имеющиеся у вас корпусные вентиляторы от компьютера. Тут есть несколько моментов, которые нужно учесть.

Первое.

Для вентиляторов нужен собственный блок питания. Из-за того, что при эксплуатации фреоновой системы охлаждения сначала включается она, а через некоторое время и сам компьютер. Делается это для того, что бы она успела охладить процессор. А уже после выхода системы в режим можно включить и сам компьютер. Так что один блок питания и для компьютера и для питания вентиляторов использовать не получиться.

Второе.

Для эффективной работы вентилятора необходимо использовать диффузор. Если просто закрепить вентилятор на конденсатор. Он будет протягивать воздух только через небольшую его часть, равную площади самого вентилятора. Эффективность охлаждения фреона будет невысокой. Диффузор выровняет воздушный поток. И продуваться будет вся поверхность конденсатора.

Диффузор должен плотно прилегать к конденсатору. Щели снижают эффективность охлаждения.

5. Заправка системы. Вакуумирование

Итак, система собрана, спаяна. Пора приступать к заправке. Но сначала нужно удалить воздух из системы. Если этого не сделать то влага, содержащаяся в воздухе, при работе системы замерзнет и забьет капилляр. Система окажется неработоспособной. Так же воздух в системе значительно снижает ее хладопроизводительность. Происходит это из-за того, что система заправляется небольшим количеством фреона, а воздух занимает определенный объем внутри системы, но не участвует в процессе.

Удалить воздух из системы можно несколькими способами. Основным и самым эффективным методом является вакуумирование. Для вакуумирования нужно специальное устройство - вакуумный насос. Это довольно дорогостоящая штука и приобретать ее самодельщику ни к чему. Можно заменить вакуумный насос другим компрессором. Конечно с помощью компрессора не получить вакуума такой глубины, как при помощи вакуумного насоса. Но существует метод, позволяющий приблизиться к его результату. А можно обойтись вообще без вакуумирования. Ниже я изложу все известные мне методы.

Но для начала проверим, насколько качественно удалось спаять систему. Для этого привернем желтый шланг от манометрической станции к баллону с фреоном и приоткрыв немного баллон продуем шланги фреоном. Для этого надо приоткрыть вентили на манометрической станции. После этой процедуры закрываем все вентили и присоединяем красный шланг к клапану Шредера на линии нагнетания.

Потом открываем вентиль на баллоне, и с помощью вентиля на манометрической станции (красный, линия нагнетания) пускаем фреон в систему. Можно в это время немного приоткрыть клапан Шредера на линии всасывания нажав на штырек клапана. Этим мы вытесним воздух из системы. Конечно не весь. Но тем не менее. Выпустив воздух, и закрыв все краны, ненадолго включаем компрессор. Потом повторяем процедуру еще раз. Далее закручиваем этот клапан колпачком (всасывание). И продолжаем поднимать давление в системе. Увеличиваем давление до 3 атмосфер. Заворачиваем все краны и оставляем систему на час, два. Если по прошествии этого времени давление в системе не снизится, нам повезло. Утечек нет. Все спаяно качественно.

Если давление упало, поднимаем давление по вышеизложенному методу и начинаем искать место утечки. Делается это мыльной водой. Кисточкой наносим мыльную воду на места соединений и смотрим, не появятся ли пузыри. Места утечек пропаиваем. Естественно перед пайкой выпускаем фреон из системы. Иначе может произойти небольшой, малоприятный взрыв. Затем повторяем всю процедуру проверки.

Система проверена, утечек нет. Идем дальше. Прикручиваем синий шланг к шредеру на линии всасывания. Красный у нас уже подсоединен. Отсоединяем баллон с фреоном. И к освободившемуся желтому шлангу присоединяем вакуумный насос. Если его нет, то специально доработанный компрессор. Он будет выполнять роль вакуумного насоса. Доработка заключается в припаивании клапанов Шредера на патрубки нагнетания и всасывания этого компрессора.

Вакуумирование производим из клапана нагнетания (высокое давление). Для этого открываем красный вентиль и включаем компрессор-вакуумный насос. На манометре низкого давления(синий) стрелка должна поползти вниз. Вакуумируем пару минут. Но так глубокого вакуума не получить. Поэтому включаем еще и компрессор системы. В результате давление на всасывании (низкое давление) станет еще ниже. Компрессоры будут работать последовательно. Это будет почти результат вакуумирования хорошим вакуумным насосом. Учитывая, что после заправки хладагент сожмет оставшийся воздух еще примерно в 10 раз — воздух практически не будет снижать холодильной мощности. Система вакуумирования получается условно двухступенчатая.

Далее выключаем компрессоры. Заворачиваем краны. Отключаем вакуумирующее устройство и на его место подключаем баллон с фреоном. Включаем компрессор системы и начинаем потихоньку подавать в нее фреон из баллона. В линию всасывания. Подача осуществляется синим вентилем. Стрелка манометра обратного потока (синий) скакнет до 3-х 4-х атмосфер. Остановим подачу и подождем несколько минут.

Потом повторяем процедуру снова. Подавать газ надо небольшими порциями. Это важно. С промежутками в несколько минут. Через некоторое время испаритель начнет покрываться инеем.

Заправку фреоном производим до тех пор, пока всасывающая трубка не покроется инеем до входа в компрессор. Это и будет окончанием заправки.

И одновременно предварительной настройкой системы.

Такая регулировка позволяет исключить попадание жидкого фреона в компрессор. Под нагрузкой фреон гарантированно выкипит раньше, не дойдя до компресора. А попадание жидкого фреона чревато выходом компрессора из строя.

Подробнее о процессе регулировки системы будет написано ниже.

Можно ли обойтись без вакуумного насоса?

Без вакуумного насоса обойтись можно. Сначала изложу способ, когда компрессор системы будет вакуумировать сам себя. Для этого между фильтром Шредера и конденсором (линия высокого давления) ставится кран. Кран должен быть такой конструкции, что бы исключить потери фреона в атмосферу.

Практически все краны, так или иначе, травят фреон. Исключение составляют сильфонные краны. Но стоимость такого крана равна стоимости недорогого компрессора. Мы же для этого применим такой вот порт от кондиционера. Особенностью этого устройства является крышка с прокладкой из алюминия. После регулировки механизм крана, который пропускает фреон, будет закрыт этой крышкой и затянут. Алюминиевая прокладка мягкая и усилием закручивания будет расплющена так, что соединение будет герметично и утечки фреона не будет.

А теперь принцип работы. Перекрываем кран. Нажимаем на штырек клапана Шредера на линии нагнетания, тем самым открывая клапан. И включаем компрессор, который начинает выкачивать воздух из системы. Кончено такого глубокого вакуума как при двухступенчатом вакуумировании, изложенном выше не получить. Но и это неплохо. Перестаем давить на штырек. Клапан закрывается, и мы немедленно выключаем компрессор. Система вакуумирована. Затем открываем кран, заворачиваем крышку на кране. С адекватным усилием. И приступаем к заправке системы, как говорилось выше. Перед такой процедурой нелишним будет несколько раз продуть систему фреоном.

Продувая систему, впускаем в нее из баллона фреон до давления в две, три атмосферы, включаем компрессор. Стравливаем фреон. И снова повторяем процедуру.

В принципе можно обойтись и без крана. Просто несколько раз продувать систему по методу, изложенному выше. И лишний воздух и влага выйдут из системы вместе с фреоном. Фреон R-22 недорогой. И поэтому такой метод выходит все же дешевле покупки дополнительного компрессора.

Выше изложено три метода вакуумирования. Каждый последующий немного хуже предыдущего. Но они позволяют сэкономить. Пусть и за счет небольшой потери производительности.

Добавлю. Все эти методы неоднократно проверены. И не только мной.

Но может случиться и такой момент. При покупке компрессора, вы его получаете с заткнутыми резиновыми пробками штуцерами. Вынимать эти пробки нужно только непосредственно перед пайкой системы. Если же вы вынули эти пробки давно, или что еще хуже, включали для проверки компрессор на прокачку воздуха, масло в нем могло впитать влагу. Из этого самого воздуха. Результат известен. Периодически перестает морозить испаритель. Исправить такую ситуацию можно только длительным вакуумированием системы с прогревом фильтра до 200 градусов. Если и это не помогает. Придется менять масло.

6. Конденсат, что это такое? Как с этим бороться? Изоляция. Установка системы в компьютер.

Все люди, так, или иначе, по несколько раз на дню сталкиваются с тем, что стакан с холодным пивом (соком, ненужное вычеркнуть) снаружи быстро запотевает и покрывается каплями воды. Это и есть конденсат. Конденсация влаги из воздуха происходит на поверхностях, температура которых ниже температуры окружающей среды. Интенсивность зависит от влажности воздуха и разности температур. Скажу только, что при 50-ти процентной влажности конденсат начинает выпадать на поверхностях, температура которых на 7 градусов ниже температуры окружающей среды. Или около того. Точных цифр я к сожалению не помню.

Такая же беда, как на стакане с пивом, но в более серьезных масштабах (все-таки температуры около -40) произойдет и с испарителями и всасывающей трубкой. Да и с сокетом процессора и даже с обратной стороной материнской платы. Только влага где-то частично замерзнет, а где-то начнет собираться в лужи. А влага на компьютерных платах чревата внеочередным апгрейдом.

Защитить электронные компоненты от конденсата можно теплоизолировав их от окружающей среды, заодно изолировав их и от влажного воздуха. Я пишу влажного потому, что воздух в жилых помещениях абсолютно сухим не бывает. Для теплоизоляции нужны определенные материалы. И определенные манипуляции с этими материалами.

Для теплоизоляции пригодны только материалы с закрытыми порами. Ели применить обычный поролон, то через несколько минут работы системы он превратиться в мокрую губку. Хорошо подойдет неопрен или все тот же пенофол. Пенофол это вспененный полиэтилен. Продается как виброшумоизоляция. Можно использовать пенопласт и монтажную пену.

Теплоизолировать необходимо испаритель, всасывающую трубку, пространство вокруг сокета и обратную сторону материнской платы в области распайки сокета. Размер пространства вокруг сокета подлежащее теплоизоляции примерно 150 на 150мм. Во время выполнения теплоизоляции нужно быть внимательным и не теплоизолировать греющиеся элементы платы. Их надо обойти теплоизоляцией. Необходимо так же предусмотреть обдув околосокетного пространства дополнительным вентилятором. Это поможет охладить силовые транзисторы цепей питания процессора. А так же поможет высыханию влаги, которая может выступить и на теплоизоляции.

Перед теплоизоляцией пространство вокруг сокета и обратную сторону материнской платы необходимо смазать токонепроводящей силиконовой смазкой. Подойдет и из серии автохимии. Это делается для исключения замыканий, которые может вызвать случайно возникший конденсат.

На сам сокет нужно нанести более густую токонепроводящюю смазку. Например, вазелин. Нужно забить им отверстия сокета. Иначе в них может образоваться конденсат с непредсказуемыми результатами.

После этого по размеру сокета вырезаем теплоизоляционную прокладку с отверстиями под греющиеся элементы. Толщина теплоизоляции не менее 10мм.

На обратную сторону платы вырезаем коврик такого же размера. И изготавливаем пластину для прижима прокладки. Очень важно прижать теплоизоляцию к плате для избежания проникновения в щели воздуха и образования в них конденсата.

Испаритель должен прижиматься к процессору и материнской плате длинными винтами. Крепление к рамке сокета не подходит. Слишком хрупка и ненадежна рамка. Подробно описывать крепеж не имеет смысла ввиду большого разнообразия сокетов. Скажу только, что между теплоизоляцией испарителя и изолирующей прокладкой платы не должно быть щелей. После первого крепления испарителя его необходимо снять и по отпечатку термопасты проконтролировать прижим испарителя к процессору. Щели в теплоизоляции обнаруживаются визуально.

Необходимо качественно теплоизолировать и сам испаритель. И всасывающую трубку. С трубкой легче всех. Для изоляции трубок выпускается специальная теплоизоляция. Она продается как в специализированных холодильных, так и в сантехнических магазинах. Название одного из видов такой теплоизоляции рубафлекс. Теплоизолировать трубку нужно после пайки системы. Для этого ее необходимо разрезать ее вдоль и склеить, после того как теплоизоляция одета на трубку. Для надежности можно обмотать обычной изолентой. Туго обматывать не следует. Изоляция от этого со временем плющиться, и теряет свои свойства.

Изолировать испаритель немного сложнее. Можно нарезать листовую изоляцию и приклеить к испарителю. А можно поместить испаритель в коробку и залить монтажной пеной. После высыхания лишнее обрезается. Толщина теплоизоляции должна приближаться к двум сантиметрам. Сантиметровый слой теплоизоляции при -40 покрывается конденсатом.

Рекомендуется после теплоизоляции и установки системы охлаждения в компьютер включить систему, без включения компьютера. И после 15 минут работы выключить и разобрать систему для проверки. Не образовался ли где конденсат.

Система теплоизолированная и установлена. Теперь самое время ее немного подрегулировать.

7. Регулировка системы.

Регулировка системы под конкретное железо осуществляется двумя путями. Хладопроизводительность регулируют количеством фреона, заправленным в систему. А также регулировкой длинны капилляра. Укорачивая капилляр, мы увеличиваем подачу фреона в испаритель. Но значительно увеличивать подачу фреона нельзя. Недоиспарившийся фреон (жидкий) может попасть в компрессор и вывести его из строя. Фреон должен полностью выкипать в испарителе и всасывающей трубке. Нужно найти оптимальную середину.

На первое время можно просто взять длину капилляра по таблице и регулировать производительность количеством фреона. Включаем систему, после выхода ее в режим, включаем компьютер. И при минимальной загрузке разогнанного процессора добавляем в систему фреон. Пока всасывающая трубка не промерзнет до входа в компрессор. Это гарантирует, что при полной загрузке фреон выкипит полностью и не попадет в компрессор. Этим способом можно пользоваться даже при отсутствии манометров.

Компрессор сжимает газообразный фреон и подает его в конденсор. Температура нагнетающей трубки (а значит и температура газа) должна находиться в пределах 55-85 градусов. Конденсатор охлаждает фреон и он конденсируется. На выходе из конденсора температура хладагента должна быть 30-45 градусов.

Если компрессор очень горячий, а конденсатор холодный. То система перезаправлена. Нужно при помощи клапана стравить лишний фреон.

Если испаритель не морозит, то или в системе недостаточно фреона или забился капилляр. Проверить забился капилляр или нет можно по звуку внутри испарителя. Во время работы испаритель шипит.

Так же не должна обмерзать область компрессора вокруг всасывающего штуцера. Это означает, что капилляр короток. Чем короче капилляр, тем меньше давление на линии нагнетания, а значит выше температура испарителя. Чем длиннее, тем ниже температура, но ниже хладопроизводительность. Давление на линии всасывания не должно превышать 1,5атмосфер.

Иногда для предотвращения попадания жидкого фреона в компрессор применяют докипатель. Это небольшая емкость перед компрессором. Ее обычно располагают между вентилятором и компрессором, и служит она для полного докипания фреона. Но докипатель существенно снижает хладопроизводительность системы за счет потерь.

8. На что следует обратить внимание во время эксплуатации фреоновой системы охлаждения?

В системах с воздушным охлаждением кулер охлаждающий процессор включается одновременно с компьютером. Ему не надо «входить в режим», он начинает отводить тепло от процессора сразу, что нельзя сказать о системах охлаждения основанных на принципе фазового перехода. Этой системе для выхода в штатный режим необходимо некоторое время. И поэтому сначала надо включить систему охлаждения, а когда она охладит процессор до определенной температуры, включить уже сам компьютер.

Можно конечно это делать вручную, но нет никакой гарантии, что в один прекрасный день вы ничего не перепутаете и не включите компьютер или вообще без фреонки, или одновременно, что может повлечь перегрев разогнанного процессора и невосполнимые потери в области комплектующих системного блока.

Для безопасной эксплуатации компьютера с криогенной системой охлаждения необходим блок автоматики, который будет «разрешать» включать компьютер только после того, как система охладит процессор до заданной температуры. С возможностью выставить эту температуру вручную.

Фабричные системы оснащаются подобными устройствами, а что делать самодельщикам? Существует два пути решения проблемы. Сконструировать и изготовить подобное устройство самому. Но это под силу далеко не каждому. Для этого необходимы не только теоретические знания в области электроники, но и практические навыки в изготовлении подобных устройств. Не говоря уже о затратах времени.

Но можно для этих целей приспособить готовые устройства, имеющиеся в свободной продаже. Расскажу как это сделать на примере электронного контроллера Dixell XR20C. Это устройство и обеспечит автоматическое включение компьютера по достижении определенной температуры на испарителе, значение которой можно установить вручную.

Существует целый ряд подобных устройств. Для использования в качестве автоматики они требуют минимальной доработки. Я использовал простейшее устройство, содержащее только контакты управления компрессором.

Работает прибор следующим образом. После включения устройство самодиагностируется, после чего замыкает контакты, которые по замыслу конструкторов и включают компрессор. По достижении на датчике определенной температуры размыкают контакты, отключая тем самым компрессор. После того как температура повысится, цикл повторяется.

В нашем случае компрессор работает постоянно, и управлять им не нужно. И требуется не выключать, а включить компьютер по достижении определенной температуры. Для этого нужно инвертировать выход устройства. Люди, хорошо разбирающиеся в электронике, без труда сами могут составить такую схемку, например, на "логике". Я же покажу, как собрать подобную схему человеку, далекому от электроники.

Мне кажется, что проще всего это можно сделать на автомобильном реле. У реле есть несколько контактов. Два контакта - контакты катушки электромагнита. При подаче напряжения на них электромагнит притягивает коромысло, которое и замыкает одну группу контактов, размыкая другую. В нашем случае нам нужны контакты, замкнутые при отключенном питании катушки электромагнита реле. Если включить реле подобным образом,

происходит следующее. При включении терморегулятор подает напряжение на реле. Контакты, отвечающие за включение компьютера, размыкаются и остаются разомкнутыми до момента, когда термодатчик зафиксирует температуру, необходимую для включения компьютера. Тогда контакты терморегулятора размыкаются, а в реле замыкаются.

Конденсатор с сопротивлением нужен для имитации работы кнопки включения компьютера. Работает эта цепь следующим образом. При замыкании контактов Power ON конденсатором в цепи потечет ток зарядки конденсатора - аналог нажатия кнопки Power ON. После зарядки конденсатора ток в цепи прекращается - аналог отпускания кнопки Power ON. Емкость конденсатора должна быть в пределах 200-400 мкФ, сопротивление 15-20 кОм.

Для работы такой автоматики необходим источник питания напряжением 12 вольт. Также для работы фреоновой системы необходим обдув конденсатора вентилятором. А как они будут работать, если блок питания включится только после того, как система должна набрать заданный минус? Поэтому специально для автоматики и работы вентиляторов нужно ставить в корпус отдельный блок питания, выдающий 12 вольт постоянного тока. Назову его блоком питания дежурного режима. К нему и подключаются автоматика и вентиляторы. Нужно только обратить внимание на максимальный ток нагрузки такого блока. Он должен быть больше суммы токов потребляющих вентиляторами.

Ну вот вроде все и собрано, спаяно, отрегулировано. Включаем-смотрим. Наслаждаемся.

А теперь еще один важный момент. После нескольких дней эксплуатации необходимо проверить надежность крепления процессора. Дело в том, что пористая изоляция, если она сжата, со временем уменьшается в объеме. Поры слипаются, и она как бы садиться. Поэтому крепеж процессор — испаритель не должен сильно давить на изоляцию иначе через некоторое время — неделя, две. Изоляция настолько сплющится, что перестанет выполнять свои функции и возможно возникновение конденсата. Поэтому лучше периодически проверять качество изоляции. И степень прижима испарителя к процессору.

В качестве профилактики рекомендуется раз в месяц-два контролировать давление в системе. Возможно, в системе существует микроутечка и через нее фреон постепенно улетучивается. Найти такую утечку сложно. И поэтому можно просто периодически дозаправлять систему. Или лишний раз убедиться, что все в порядке.

Скрин результатов разгона процессора

Несколько фотографий систем изготовленных автором.

Вот как бы и все что планировалось рассказать. Если вышеизложенное заинтересует посетителей сайта http://www.megamod.ru/ , то продолжение обязательно будет.

10. Дополнительная информация по фреоновым системам охлаждения. Ссылки.

Наилучшие сайты по фреоновым системам охлаждения.

  • www.xtremesystems.org
  • www.phase-change.com
  • www.overclockers.ru

Дополнительная информация по компрессорам



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...