Что такое ток коллектора биполярного транзистора. Биполярные транзисторы

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройствесотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и рассчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы .

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn . Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют
отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора :

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения . При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки . При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим . Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): I Б *β=I K .

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h 21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить h FE . Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (I К =β*I Б) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз
— напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и
даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

И снова вперёд!

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером .

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой .

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(I К +I Б)/I Б =β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Продолжение следует…

Транзисторы являются активными компонентами и используются повсеместно в электронных цепях в качестве усилителей и коммутационных устройств (транзисторных ключей). Как усилительные приборы они применяются в приборах высокой и низкой частоты, генераторах сигналов, модуляторах, детекторах и многих других цепях. В цифровых схемах, в импульсных блоках питания и управляемых электроприводах они служат в качестве ключей.

Биполярные транзисторы

Так называется наиболее распространенный тип транзистора. Они делятся на npn и pnp типы. Материалом для них наиболее часто является кремний или германий. Поначалу транзисторы делались из германия, но они были очень чувствительны к температуре. Кремниевые приборы гораздо более стойки к ее колебаниям и дешевле в производстве.

Различные биполярные транзисторы показаны на фото ниже.

Маломощные приборы расположены в небольших пластиковых прямоугольных или металлический цилиндрических корпусах. Они имеют три вывода: для базы (Б), эмиттер (Э) и коллектор (К). Каждый из них подключен к одному из трех слоев кремния с проводимостью либо n- (ток образуют свободные электроны), либо p-типа (ток образуют так называемые положительно заряженные «дырки»), из которых и состоит структура транзистора.

Как устроен биполярный транзистор?

Принципы работы транзистора нужно изучать, начиная с его устройства. Рассмотрим структуру npn-транзистора, которая изображена на рис.ниже.

Как видим, он содержит три слоя: два с проводимостью n-типа и один - p-типа. Тип проводимости слоев определяется степенью легирования специальными примесями различных частей кремниевого кристалла. Эмиттер n-типа очень сильно легирован, чтобы получить множество свободных электронов как основных носителей тока. Очень тонкая база p-типа слегка легирована примесями и имеет высокое сопротивление, а коллектор n- типа очень сильно легирован, чтобы придать ему низкое сопротивление.

Принципы работы транзистора

Лучшим способом познакомиться с ними является экспериментальный путь. Ниже приведена схема простой цепи.

Она использует силовой транзистор для управления свечением лампочки. Вам также понадобится батарейка, небольшаю лампочка от фонарика примерно 4,5 В/0,3 А, потенциометр в виде переменного резистора (5К) и резистор 470 Ом. Эти компоненты должны быть соединены, как показано на рисунке справа от схемы.

Поверните движок потенциометра в крайнее нижнее положение. Это понизит напряжение на базе (между базой и землёй) до нуля вольт (U BE = 0). Лампа не светится, что означает отсутствие тока через транзистор.

Если теперь поворачивать рукоятку от ее нижней позиции, то U BE постепенно увеличивается. Когда оно достигает 0,6 В, ток начинает втекать в базу транзистора, и лампа начинает светиться. Когда рукоятка сдвигается дальше, напряжение U BE остается на уровне 0,6 В, но ток базы увеличивается и это увеличивает ток через цепь коллектор-эмиттер. Если рукоятка сдвинута в верхнее положение, напряжение на базе будет немного увеличено до 0,75 В, но ток значительно возрастет и лампа будет светиться ярко.

А если измерить токи транзистора?

Если мы включим амперметр между коллектором (C) и лампой (для измерения I C), другой амперметр между базой (B) и потенциометром (для измерения I B), а также вольтметр между общим проводом и базой и повторим весь эксперимент, мы сможем получить некоторые интересные данные. Когда рукоятка потенциометра находится в его низшей позиции, U BE равно 0 В, также как и токи I C и I B . Когда рукоятку сдвигают, эти значения растут до тех пор, пока лампочка не начинает светиться, когда они равны: U BE = 0.6 В, I B = 0,8 мА и I C = 36 мА.

В итоге мы получаем от этого эксперимента следующие принципы работы транзистора: при отсутствии положительного (для npn-типа) напряжения смещения на базе токи через его выводы равны нулю, а при наличии напряжения и тока базы их изменения влияют на ток в цепи коллектор - эмиттер.

Что происходит при включении питания транзистора

Во время нормальной работы, напряжение, приложенное к переходу база-эмиттер, распределяется так, что потенциал базы (p-типа) приблизительно на 0,6 В выше, чем у эмиттера (n-типа). При этом к данному переходу приложено прямое напряжение, он смещен в прямом направлении и открыт для протекания тока из базы в эмиттер.

Гораздо более высокое напряжение приложено к переходу база-коллектор, причем потенциал коллектора (n-типа) оказывается более высоким, чем у базы (p-типа). Так что к переходу приложено обратное напряжение и он смещен в обратном направлении. Это приводит к образованию довольно толстого обедненного электронами слоя в коллекторе вблизи базы, когда к транзистору прикладывается напряжение питания. В результате ток через цепь коллектор-эмиттер не проходит. Распределение зарядов в зонах переходов npn-транзистора показан на рисунке ниже.

Какова роль тока базы?

Как же заставить работать наш электронный прибор? Принцип действия транзистора заключается во влиянии тока базы на состояние закрытого перехода база-коллектор. Когда переход база-эмиттер смещен в прямом направлении, небольшой ток будет поступать в базу. Здесь его носителями являются положительно заряженные дырки. Они комбинируются с электронами, поступающими из эмиттера, обеспечивая ток I BE . Однако вследствие того, что эмиттер очень сильно легирован, гораздо больше электронов поступает из него в базу, чем способно соединиться с дырками. Это означает, что возникает большая концентрация электронов в базе, и большинство из них пересекает ее и попадает в обедненный электронами слой коллектора. Здесь они попадают под влияние сильного электрического поля, приложенного к переходу база-коллектор, проходят через обедненный электронами слой и основной объем коллектора к его выводу.

Изменения тока, втекающего в базу, влияют на количество привлеченных от эмиттера электронов. Таким образом, принципы работы транзистора могут быть дополнены следующим утверждением: очень небольшие изменения в базовом токе вызывают очень большие изменения в токе, протекающем от эмиттера к коллектору, т.е. происходит усиление тока.

Типы полевых транзисторов

По английски они обозначаются FETs - Field Effect Transistors, что можно перевести как «транзисторы с полевым эффектом». Хотя есть много путаницы в названиях для них, но встречаются в основном два основных их типа:

1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.

2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.

Внешне они очень похожи на биполярные, что подтверждает фото ниже.

Устройство полевого транзистора

Все полевые транзисторы могут быть названы УНИПОЛЯРНЫМИ приборами, потому что носители заряда, которые образуют ток через них, относятся к единственному для данного транзистора типу - либо электроны, либо «дырки», но не оба одновременно. Это отличает принцип работы транзистора полевого от биполярного, в котором ток образуется одновременно обоими этими типами носителей.

Носители тока протекают в полевых транзисторах с управляющим pn-переходом по слою кремния без pn-переходов, называемому каналом, с проводимостью либо n-, либо p-типа между двумя выводами, именуемыми «истоком» и «стоком» - аналогами эмиттера и коллектора или, точнее,катода и анода вакуумного триода. Третий вывод - затвор (аналог сетки триода) - присоединен к слою кремния с другим типом проводимости, чем у канала исток-сток. Структура такого прибора показана на рисунке ниже.

Как же работает полевой транзистор? Принцип работы его заключается в управлении поперечным сечением канала путем приложения напряжения к переходу затвор-канал. Его всегда смещают в обратном направлении, поэтому транзистор практически не потребляет тока по цепи затвора, тогда как биполярному прибору для работы нужен определенный ток базы. При изменении входного напряжения область затвора может расширяться, перекрывая канал исток-сток вплоть до полного его закрытия, управляя таким образом током стока.

Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.

С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h21э .

Необходимость наличия пробника

Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и .

Устройство транзистора

Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.

Он имеет три вывода, которые формируют между собой диоды (полупроводники).

Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.

Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.

Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.

Ищем базу, эмиттер и коллектор на транзисторе

Как сразу найти коллектор.

Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.

Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.

Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.

Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.

Если коллектор определен, то определить другие выводы уже будет не сложно.

Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.

Производим нужные замеры прямого и обратного сопротивления.

Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.

Как же тут найти базу, эмиттер и коллектор?

Без мультиметра или просто омметра тут не обойтись.

Итак, приступаем к поиску. Сначала нам нужно найти базу.

Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.

Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.

Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.

Эти показания пока ничего нам не дают. Делаем замеры дальше.

Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.

Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.

Это тоже нам ничего не говорить. Замеряем дальше.

Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.

Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.

А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.

Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.

Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.

В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.

Значит правый вывод - это эмиттер, а средний вывод – это коллектор.

Итак, поиск базы, эмиттера и коллектора завершен.

Как проверить транзистор на исправность

Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.

В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n .

P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.

Стрелка, которая идет от базы указывает на то, что это n-p-n переход.

P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.

Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200 ».

Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.

Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.

Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.

Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.

Настройки мультиметра менять не нужно.

Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.

Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.

Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.

Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.

В данном случае выводы нужно будет выпаять и проводить замеры снова.

Признаки неисправности транзистора

Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.

Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.

Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.

Итак, третья и заключительная часть повествования о биполярных транзисторах на нашем сайте =) Сегодня мы поговорим об использовании этих замечательных устройств в качестве усилителей, рассмотрим возможные схемы включения биполярного транзистора и их основные преимущества и недостатки. Приступаем!

Эта схема очень хороша при использовании сигналов высоких частот. В принципе для этого такое включение транзистора и используется в первую очередь. Очень большими минусами являются малое входное сопротивление и, конечно же, отсутствие усиления по току. Смотрите сами, на входе у нас ток эмиттера , на выходе .

То есть ток эмиттера больше тока коллектора на небольшую величину тока базы. А это значит, что усиление по току не просто отсутствует, более того, ток на выходе немного меньше тока на входе. Хотя, с другой стороны, эта схема имеет достаточно большой коэффициент передачи по напряжению) Вот такие вот достоинства и недостатки, продолжаем….

Схема включения биполярного транзистора с общим коллектором

Вот так вот выглядит схема включения биполярного транзистора с общим коллектором. Ничего не напоминает?) Если взглянуть на схему немного под другим углом, то мы узнаем тут нашего старого друга – эмиттерный повторитель. Про него была чуть ли не целая статья (), так что все, что касается этой схемы мы уже там рассмотрели. А нас тем временем ждет наиболее часто используемая схема – с общим эмиттером.

Схема включения биполярного транзистора с общим эмиттером.

Эта схема заслужила популярность своими усилительными свойствами. Из всех схем она дает наибольшее усиление по току и по напряжению, соответственно, велико и увеличение сигнала по мощности. Недостатком схемы является то, что усилительные свойства сильно подвержены влиянию роста температуры и частоты сигнала.

Со всеми схемами познакомились, теперь рассмотрим подробнее последнюю (но не последнюю по значимости) схему усилителя на биполярном транзисторе (с общим эмиттером). Для начала, давайте ее немножко по-другому изобразим:

Тут есть один минус – заземленный эмиттер. При таком включении транзистора на выходе присутствуют нелинейные искажения, с которыми, конечно же, нужно бороться. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база. Действительно, в цепи эмиттера ничего «лишнего» нету, все входное напряжение оказывается приложенным именно к переходу база-эмиттер. Чтобы справиться с этим явлением, добавим резистор в цепь эмиттера. Таким образом, мы получим отрицательную обратную связь.

А что же это такое?

Если говорить кратко, то принцип отрицательной обратно й связи заключается в том, что какая то часть выходного напряжения передается на вход и вычитается из входного сигнала. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи.

И тем не менее, отрицательная обратная связь для нас оказывается очень полезной. Давайте разберемся, каким образом она поможет уменьшить влияние входного напряжения на напряжение между базой и эмиттером.

Итак, пусть обратной связи нет, Увеличение входного сигнала на 0.5 В приводит к такому же росту . Тут все понятно 😉 А теперь добавляем обратную связь! И точно также увеличиваем напряжение на входе на 0.5 В. Вслед за этим возрастает , что приводит к росту тока эмиттера. А рост приводит к росту напряжения на резисторе обратной связи. Казалось бы, что в этом такого? Но ведь это напряжение вычитается из входного! Смотрите, что получилось:

Выросло напряжение на входе – увеличился ток эмиттера – увеличилось напряжение на резисторе отрицательной обратной связи – уменьшилось входное напряжение (из-за вычитания ) – уменьшилось напряжение .

То есть отрицательная обратная связь препятствует изменению напряжения база-эмиттер при изменении входного сигнала.

В итоге наша схема усилителя с общим эмиттером пополнилась резистором в цепи эмиттера:

Есть еще одна проблема в нашем усилителе. Если на входе появится отрицательное значение напряжения, то транзистор сразу же закроется (напряжения базы станет меньше напряжения эмиттера и диод база-эмиттер закроется), и на выходе ничего не будет. Это как то не очень хорошо) Поэтому необходимо создать смещение . Сделать это можно при помощи делителя следующим образом:

Получили такую красотищу 😉 Если резисторы и равны, то напряжение на каждом из них будет равно 6В (12В / 2). Таким образом, при отсутствии сигнала на входе потенциал базы будет равен +6В. Если на вход придет отрицательное значение, например, -4В, то потенциал базы будет равен +2В, то есть значение положительное и не мешающее нормальной работе транзистора. Вот как полезно создать смещение в цепи базы)

Чем бы еще улучшить нашу схему…

Пусть мы знаем, какой сигнал будем усиливать, то есть знаем его параметры, в частности частоту. Было бы отлично, если бы на входе ничего, кроме полезного усиливаемого сигнала не было. Как это обеспечить? Конечно, же при помощи фильтра высоких частот) Добавим конденсатор, который в сочетании с резистором смещения образует ФВЧ:

Вот так схема, в которой почти ничего не было, кроме самого транзистора, обросла дополнительными элементами 😉 Пожалуй, на этом и остановимся, скоро будет статья, посвященная практическому расчету усилителя на биполярном транзисторе. В ней мы не только составим принципиальную схему усилителя , но и рассчитаем номиналы всех элементов, а заодно и выберем транзистор, подходящий для наших целей. До скорой встречи! =)

ТЕМА 4. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

4.1 Устройство и принцип действия

Биполярный транзистор – это полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и пригодный для усиления мощности.

Выпускаемые в настоящее время биполярные транзисторы можно классифицировать по следующим признакам:

По материалу: германиевые и кремниевые;

По виду проводимости областей: типа р-n-р и n-p-n;

По мощности: малой (Рмах £ 0,3Вт), средней (Рмах £ 1,5Вт) и большой мощности (Рмах > 1,5Вт);

По частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В биполярных транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок (или основными и неосновными). Отсюда их название – биполярные.

В настоящее время изготавливаются и применяются исключительно транзисторы с плоскостными р-n- переходами.

Устройство плоскостного биполярного транзистора показано схематично на рис. 4.1.

Он представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n-р-n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р-n-р имеют среднюю область с электронной, а крайние области с дырочной электропроводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом в транзисторе имеются два р-n- перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Площадь эмиттерного перехода меньше площади коллекторного перехода.

Эмиттером называется область транзистора назначением которой является инжекция носителей заряда в базу. Коллектором называют область, назначением которой является экстракция носителей заряда из базы. Базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а их концентрация в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера на несколько порядков выше проводимости базы, а проводимость коллектора несколько меньше проводимости эмиттера.

От базы, эмиттера и коллектора сделаны выводы. В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Рассмотрим принцип действия транзистора на примере транзистора р-n-р –типа, включенного по схеме с общей базой (рис. 4.2).

Рисунок 4.2 – Принцип действия биполярного транзистора (р-n-р- типа)

Внешние напряжения двух источников питания ЕЭ и Ек подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении (прямое напряжение), а коллекторного перехода П2 – в обратном направлении (обратное напряжение).

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток Iко (единицы микроампер). Этот ток возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Ек, база-коллектор, −Ек. Величина обратного тока коллектора не зависит от напряжения на коллекторе, но зависит от температуры полупроводника.

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование (впрыскивание) дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Ек. Дырки, рекомбинировавшие с электронами в базе, создают ток базы IБ.

Под действием обратного напряжения Ек потенциальный барьер коллекторного перехода повышается, толщина перехода П2 увеличивается. Но потенциальный барьер коллекторного перехода не создает препятствия для прохождения через него дырок. Вошедшие в область коллекторного перехода дырки попадают в сильное ускоряющее поле, созданное на переходе коллекторным напряжением, и экстрагируются (втягиваются) коллектором, создавая коллекторный ток Iк. Коллекторный ток протекает по цепи: +Ек, база-коллектор, -Ек.

Таким образом, в транзисторе протекает три тока: ток эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Следовательно, ток базы равен разности токов эмиттера и коллектора: IБ = IЭ − IК.

Физические процессы в транзисторе типа n-р-n протекают аналогично процессам в транзисторе типа р-n-р.

Полный ток эмиттера IЭ определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток Iк. Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы IБ. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. IЭ = IБ + Iк.

Ток эмиттера является входным током, ток коллектора – выходным. Выходной ток составляет часть входного, т.е.

где a- коэффициент передачи тока для схемы ОБ;

Поскольку выходной ток меньше входного, то коэффициент a<1. Он показывает, какая часть инжектированных в базу носителей заряда достигает коллектора. Обычно величина a составляет 0,95¸0,995.

В схеме с общим эмиттером выходным током является ток коллектора, а входным – ток базы. Коэффициент усиления по току для схемы ОЭ:

(4.3)

Следовательно, коэффициент усиления по току для схемы ОЭ составляет десятки единиц.

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Ек значительно больше, чем эмиттерного Еэ, то и мощность, потребляемая в цепи коллектора Рк, будет значительно больше мощности в цепи эмиттера Рэ. Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

4.2 Схемы включения биполярных транзисторов

В электрическую цепь транзистор включают таким образом, что один из его выводов (электрод) является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК. Эти схемы для транзистора типа р-n-р приведены на рис. 4.3. Для транзистора n-р-n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора (в активном режиме) полярность включения источников питания должна быть выбрана так, чтобы эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Рисунок 4.3 – Схемы включения биполярных транзисторов: а) ОБ; б) ОЭ; в) ОК

4.3 Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

4.3.1 Характеристики транзистора, включенного по схеме ОБ

IЭ = f(UЭБ) при UКБ = const (рис. 4.4, а).

IК = f(UКБ) при IЭ = const (рис. 4.4, б).

Рисунок 4.4 – Статические характеристики биполярного транзистора, включенного по схеме ОБ

Выходные ВАХ имеют три характерные области: 1 – сильная зависимость Iк от UКБ (нелинейная начальная область); 2 – слабая зависимость Iк от UКБ (линейная область); 3 – пробой коллекторного перехода.

Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения UКБ.

4.3.2 Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

IБ = f(UБЭ) при UКЭ = const (рис. 4.5, б).

Выходной характеристикой является зависимость:

IК = f(UКЭ) при IБ = const (рис. 4.5, а).

Рисунок 4.5 – Статические характеристики биполярного транзистора, включенного по схеме ОЭ

Транзистор в схеме ОЭ дает усиление по току. Коэффициент усиления по току в схеме ОЭ: Если коэффициент a для транзисторов a = 0,9¸0,99, то коэффициент b = 9¸99. Это является важнейшим преимуществом включения транзистора по схеме ОЭ, чем, в частности, определяется более широкое практическое применение этой схемы включения по сравнению со схемой ОБ.

Из принципа действия транзистора известно, что через вывод базы протекают во встречном направлении две составляющие тока (рис. 4.6): обратный ток коллекторного перехода IКО и часть тока эмиттера (1 − a)IЭ. В связи с этим нулевое значение тока базы (IБ = 0) определяется равенством указанных составляющих токов, т.е. (1 − a)IЭ = IКО. Нулевому входному току соответствуют ток эмиттера IЭ=IКО/(1−a)=(1+b)IКО и ток коллектора . Иными словами, при нулевом токе базы (IБ = 0) через транзистор в схеме ОЭ протекает ток, называемый начальным или сквозным током IКО(Э) и равным (1+ b) IКО.

Рисунок 4.6 – Схема включения транзистора с общим эмиттером (схема ОЭ)

4.4 Основные параметры

Для анализа и расчета цепей с биполярными транзисторами используют так называемые h – параметры транзистора, включенного по схеме ОЭ.

Электрическое состояние транзистора, включенного по схеме ОЭ, характеризуется величинами IБ, IБЭ, IК, UКЭ.

В систему h − параметров входят следующие величины:

1. Входное сопротивление

h11 = DU1/DI1 при U2 = const. (4.4)

представляет собой сопротивление транзистора переменному входному току при котором замыкание на выходе, т.е. при отсутствии выходного переменного напряжения.

2. Коэффициент обратной связи по напряжению:

h12 = DU1/DU2при I1= const. (4.5)

показывает, какая доля входного переменного напряжения передается на вход транзистора вследствие обратной связи в нем.

3. Коэффициент усилия по току (коэффициент передачи тока):

h21 = DI2/DI1при U2= const. (4.6)

показывает усиление переменного тока транзистором в режиме работы без нагрузки.

4. Выходная проводимость:

h22 = DI2/DU2 при I1 = const. (4.7)

представляет собой проводимость для переменного тока между выходными зажимами транзистора.

Выходное сопротивление Rвых = 1/h22.

Для схемы с общим эмиттером справедливы следующие уравнения:

(4.8)

Для предотвращения перегрева коллекторного перехода необходимо, чтобы мощность, выделяемая в нем при прохождении коллекторного тока, не превышала некоторой максимальной величины:

(4.9)

Кроме того, существуют ограничения по коллекторному напряжению:

и коллекторному току:

4.5 Режимы работы биполярных транзисторов

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р-n- перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р-n- перехода открыты), то транзистор работает в режиме насыщения.

В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы (усиление, генерирование и т.п.).

4.6 Область применения

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

4.7 Простейший усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером (рис. 4.7)

Основными элементами схемы являются источник питания Ек, управляемый элемент – транзисторVT и резистор Rк. Эти элементы образуют главную (выходную) цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы.

Остальные элементы выполняют вспомогательную роль. Конденсатор Ср является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Ек.

Рисунок 4.7 – Схема простейшего усилительного каскада на биполярном транзисторе по схеме с общим эмиттером

Резистор RБ, включенный в цепь базы, обеспечивает работу транзистора в режиме покоя, т.е. в отсутствие входного сигнала. Режим покоя обеспечивается током базы покоя IБ » Ек/RБ.

С помощью резистора Rк создается выходное напряжение, т.е. Rк выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Ек = Uкэ + IкRк, (4.10)

т.е сумма падения напряжения на резисторе Rк и напряжения коллектор-эмиттер Uкэ транзистора всегда равна постоянной величине – ЭДС источника питания Ек.

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Ек в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

При подаче на вход усилительного каскада переменного напряжения uвх в базовой цепи транзистора создается переменная составляющая тока IБ~, а значит ток базы будет изменяться. Изменение тока базы приводит к изменению значения тока коллектора (IК = bIБ), а значит, к изменению значений напряжений на сопротивлении Rк и Uкэ. Усилительные способности обусловлены тем, что изменение значений тока коллектора в b раз больше, чем тока базы.

4.8 Расчет электрических цепей с биполярными транзисторами

Для коллекторной цепи усилительного каскада (рис. 4.7) в соответствии со вторым законом Кирхгофа справедливо уравнение (4.10).

Вольт – амперная характеристика коллекторного резистора RК является линейной, а вольт – амперные характеристики транзистора представляют собой нелинейные коллекторные характеристики транзистора (рис. 4.5, а), включенного по схеме ОЭ.

Расчет такой нелинейной цепи, т.е определение IK, URK и UКЭ для различных значений токов базы IБ и сопротивлений резистора RК можно провести графически. Для этого на семействе коллекторных характеристик (рис. 4.5, а) необходимо провести из точки ЕК на оси абсцисс вольт – амперную характеристику резистора RК, удовлетворяющую уравнению:

Uкэ = Ек − RкIк. (4.11)

Эту характеристику строят по двум точкам:

Uкэ =Ек при Iк = 0 на оси абсцисс и Iк = Ек/Rк при Uкэ = 0 на оси ординат. Построенную таким образом ВАХ коллекторного резистора Rк называют линией нагрузки. Точки пересечения ее с коллекторными характеристиками дают графическое решение уравнения (4.11) для данного сопротивления Rк и различных значений тока базы IБ. По этим точкам можно определить коллекторный ток Iк, одинаковый для транзистора и резистора Rк, а также напряжение UКЭ и URK.

Точка пересечения линии нагрузки с одной из статических ВАХ называется рабочей точкой транзистора. Изменяя IБ, можно перемещать ее по нагрузочной прямой. Начальное положение этой точки при отсутствии входного переменного сигнала называют точкой покоя − Т0.

а) б)

Рисунок 4.8 – Графоаналитический расчет рабочего режима транзистора при помощи выходных и входной характеристики.

Точка покоя (рабочая точка) Т0 определяет ток IКП и напряжение UКЭП в режиме покоя. По этим значениям можно найти мощность РКП, выделяющуюся в транзисторе в режиме покоя, которая не должна превышать предельной мощности РК мах, являющейся одним из параметров транзистора:

РКП = IКП ×UКЭП £ РК мах. (4.12)

В справочниках обычно не приводится семейство входных характеристик, а даются лишь характеристики для UКЭ = 0 и для некоторого UКЭ > 0.

Входные характеристики для различных UКЭ, превышающих 1В, располагаются очень близко друг к другу. Поэтому расчет входных токов и напряжений можно приближенно делать по входной характеристике при UКЭ > 0, взятой из справочника.

На эту кривую переносятся точки А, То и Б выходной рабочей характеристики, и получаются точки А1, Т1 и Б1 (рис. 4.8, б). Рабочая точка Т1 определяет постоянное напряжение базы UБЭП и постоянной ток базы IБП.

Сопротивление резистора RБ (обеспечивает работу транзистора в режиме покоя), через который от источника ЕК будет подаваться постоянное напряжение на базу:

(4.13)

В активном (усилительном) режиме точка покоя транзистора То находится примерно посередине участка линии нагрузки АБ, а рабочая точка не выходит за пределы участка АБ.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...