Как из маленьких электронных часов сделать большие. Как самому сделать электронные часы в ретро стиле

Предлагаю вашему вниманию электронные часы на микроконтроллере . Схема часов очень проста, содержит минимум деталей, доступна для повторения начинающим радиолюбителям.

Конструкция собрана на микроконтроллере и часов реального времени DS1307 . В качестве индикатора текущего времени использован четырехразрядный семисегментный светодиодный индикатор (ультраяркий, голубого цвета свечения, что неплохо смотрится в темное время, и, заодно, часы играют роль ночника). Управление часами происходит двумя кнопками. Благодаря использованию микросхемы часов реального времени DS1307, алгоритм программы получился довольно простым. Общение микроконтроллера с часами реального времени происходит по шине I2C, и организованно программным путем.

Схема часов:

К сожалению, в схеме есть ошибка:
— выводы МК к базам транзисторов нужно подключать:
РВ0 к Т4, РВ1 к Т3, РВ2 к Т2, РВ3 к Т1
или поменять подключение коллекторов транзисторов к разрядам индикатора:
Т1 к DP1 ….. Т4 к DP4

Детали, используемые в схеме часов:

♦ микроконтроллер ATTiny26:

♦ часы реального времени DS1307:

♦ 4-разрядный семисегментный светодиодный индикатор – FYQ-5641UB -21 с общим катодом (ультраяркий, голубого цвета свечения):

♦ кварц 32,768 кГц, с входной емкостью 12,5 пф (можно взять с материнской платы компьютера), от этого кварца зависит точность хода часов:

♦ все транзисторы — NPN-структуры, можно применить любые (КТ3102, КТ315 и их зарубежные аналоги), я применил ВС547С
♦ микросхемный стабилизатор напряжения типа 7805
♦ все резисторы мощностью 0,125 ватт
♦ полярные конденсаторы на рабочее напряжение не ниже напряжения питания
♦ резервное питание DS1307 – 3 вольтовый литиевый элемент CR2032

Для питания часов можно использовать любое ненужное зарядное устройство сотового телефона (в этом случае, если напряжение на выходе зарядного устройства в пределах 5 вольт ± 0,5 вольта, часть схемы — стабилизатор напряжения на микросхеме типа 7805, можно исключить)
Ток потребления устройством составляет — 30 мА.
Батарейку резервного питания часов DS1307 можно и не ставить, но тогда, при пропадании напряжения в сети, текущее время придется устанавливать заново.
Печатная плата устройства не приводится, конструкция была собрана в корпусе от неисправных механических часов. Светодиод (с частотой мигания 1 Гц, от вывода SQW DS1307) служит для разделения часов и минут на индикаторе.

Установки микроконтроллера заводские: тактовая частота — 1МГц, FUSE-биты трогать не надо.

Алгоритм работы часов (в Algorithm Builder):

1. Установка указателя стека
2. Настройка таймера Т0:
— частота СК/8
— прерывания по переполнению (при такой предустановленной частоте вызов прерывания происходит каждые 2 миллисекунды)
3. Инициализация портов (выводы РА0-6 и РВ0-3 настраиваются на выход, РА7 и РВ6 на вход)
4. Инициализация шины I2C (выводы РВ4 и РВ5)
5. Проверка 7-го бита (СН) нулевого регистра DS1307
6. Глобальное разрешение прерывания
7. Вход в цикл с проверкой нажатия кнопки

При первом включении, или повторном включении при отсутствии резервного питания DS307, происходит переход в первоначальную установку текущего времени. При этом: кнопка S1 – для установки времени, кнопка S2 – переход к следующему разряду. Установленное время – часы и минуты записываются в DS1307 (секунды устанавливаются в ноль), а также вывод SQW/OUT (7-й вывод) настраивается на генерацию прямоугольных импульсов с частотой 1 Гц.
При нажатии кнопки S2 (S4 — в программе) происходит глобальный запрет прерываний, программа переходит в подпрограмму коррекции времени. При этом, кнопками S1 и S2 устанавливаются десятки и единицы минут, затем, с 0 секунд, нажатием кнопки S2 происходит запись уточненного времени в DS1307, разрешение глобального прерывания и возвращение в основную программу.

Часы показали хорошую точность хода, уход времени за месяц — 3 секунды.
Для улучшения точности хода, кварц рекомендуется подключать к DS1307, как указано в даташите:

Программа написана в среде «Algorithm Builder».
Вы можете, на примере программы часов, ознакомиться с алгоритмом общения микроконтроллера с другими устройствами по шине I2C (в алгоритме подробно прокомментирована каждая строчка).

Фотография собранного устройства и печатная плата в формате.lay от читателя сайта Анатолия Пильгук, за что ему огромное спасибо!

В устройстве применены: Транзисторы — СМД ВС847 и ЧИП резисторы

Приложения к статье:

(42,9 KiB, 3 038 hits)

(6,3 KiB, 4 058 hits)

(3,1 KiB, 2 500 hits)

(312,1 KiB, 5 833 hits)


Второй вариант программы часов в АБ (для тех у кого нескачивается верхний)

(11,4 KiB, 1 842 hits)

На фото прототип, собранный мной для отладки программы, которая будет управлять всем этим хозяйством. Вторая arduino nano в верхнем правом углу макетки не относится к проекту и торчит там просто так, внимание на нее можно не обращать.

Немного о принципе работы: ардуино берет данные у таймера DS323, перерабатывает их, определяет уровень освещенности с помощью фоторезистора, затем все посылает на MAX7219, а она в свою очередь зажигает нужные сегменты с нужной яркостью. Так же с помощью трех кнопок можно выставить год, месяц, день, и время по желанию. На фото индикаторы отображают время и температуру, которая взята с цифрового термодатчика

Основная сложность в моем случае - это то, что 2.7 дюймовые индикаторы с общим анодом, и их надо было во первых как то подружить с max7219, которая заточена под индикаторы с общим катодом, а во вторых решить проблему с их питанием, так как им нужно 7,2 вольта для свечения, чего одна max7219 обеспечить не может. Попросив помощи на одном форуме я получил таки ответ.

Решение на скриншоте:


К выходам сегментов из max7219 цепляется микросхемка , которая инвертирует сигнал, а к каждому выводу, который должен подключаться к общему катоду дисплея цепляется схемка из трех транзисторов, которые так же инвертируют его сигнал и повышают напряжение. Таким образом мы получаем возможность подключить к max7219 дисплеи с общим анодом и напряжением питания более 5 вольт

Для теста подключил один индикатор, все работает, ничего не дымит

Начинаем собирать.

Схему решил разделить на 2 части из-за огромного количества перемычек в разведенном моими кривыми лапками варианте, где все было на одной плате. Часы будут состоять из блока дисплея и блока питания и управления. Последний было решено собрать первым. Эстетов и бывалых радиолюбителей прошу не падать в обморок из-за жестокого обращения с деталями. Покупать принтер ради ЛУТа нет никакого желания, поэтому делаю по старинке - тренируюсь на бумажке, сверлю отверстия по шаблону, рисую маркером дорожки, затем травлю.

Принцип крепления индикаторов оставил тот же, как и на .

Размечаем положение индикаторов и компонентов, с помощью шаблона из оргстекла, сделанного для удобства.

Процесс разметки







Затем с помощью шаблона сверлим отверстия в нужных местах и примеряем все компоненты. Все встало безупречно.

Рисуем дорожки и травим.




купание в хлорном железе

Готово!
плата управления:


плата индикации:


Плата управления получилась отлично, на плате индикации не критично сожрало дорожку, это поправимо, настало время паять. В этот раз я лишился SMD-девственности, и включил 0805 компоненты в схему. Худо-бедно первые резисторы и конденсаторы были припаяны на места. Думаю дальше набью руку, будет легче.
Для пайки использовал флюс, который купил . Паять с ним одно удовольствие, спиртоканифоль использую теперь только для лужения.

Вот готовые платы. На плате управления имеется посадочное место для ардуино нано, часов, а так же выходы для подключения к плате дисплея и датчики (фоторезистор для автояркости и цифровой термометр ds18s20) и блок питания на с регулировкой выходного напряжения (для больших семисегментников) и для питания часов и ардуино, на плате индикации находятся посадочные гнезда для дисплеев, панельки для max2719 и uln2003a, решение для питания четырех больших семисегментников и куча перемычек.




плата управления сзади

Плата индикации сзади:

Ужасный монтаж смд:


Запуск

После припаивания всех шлейфов, кнопок и датчиков пришло время все это включить. Первый запуск выявил несколько проблем. Не светился последний большой индикатор, а остальные светились тускло. С первой проблемой расправился пропаиванием ножки смд-транзистора, со второй - регулировкой напряжения, выдаваемого lm317.
ОНО ЖИВОЕ!

Привет, geektimes! В первой части статьи были рассмотрены принципы получения точного времени на самодельных часах. Пойдем дальше, и рассмотрим, как и на чем это время лучше выводить.

1. Устройства вывода

Итак, у нас есть некая платформа (Arduino, Raspberry, PIC/AVR/STM-контроллер, etc), и стоит задача подключить к нему некую индикацию. Есть множество вариантов, которые мы и рассмотрим.

Сегментная индикация

Тут все просто. Сегментный индикатор состоит из обычных светодиодов, которые банально подключаются к микроконтроллеру через гасящие резисторы.

Осторожно, траффик!

Плюсы: простота конструкции, хорошие углы обзора, невысокая цена.
Минус: количество отображаемой информации ограничено.
Конструкции индикаторов бывают двух видов, с общим катодом и общим анодом, внутри это выглядит примерно так (схема с сайта производителя).

Есть 1001 статья как подключить светодиод к микроконтроллеру, гугл в помощь. Сложности начинаются тогда, когда мы захотим сделать большие часы - ведь смотреть на мелкий индикатор не особо удобно. Тогда нам нужны такие индикаторы (фото с eBay):

Они питаются от 12В, и напрямую от микроконтроллера просто не заработают. Тут нам в помощь приходит микросхема CD4511 , как раз для этого предназначенная. Она не только преобразует данные с 4-битной линии в нужные цифры, но и содержит встроенный транзисторный ключ для подачи напряжения на индикатор. Таким образом, нам в схеме нужно будет иметь «силовое» напряжение в 9-12В, и отдельный понижающий преобразователь (например L7805) для питания «логики» схемы.

Матричные индикаторы

По сути, это те же светодиоды, только в виде матрицы 8х8. Фото с eBay:

Продаются на eBay в виде одиночных модулей либо готовых блоков, например по 4 штуки. Управление ими весьма просто - на модулях уже распаяна микросхема MAX7219 , обеспечивающая их работу и подключение к микроконтроллеру с помощью всего лишь 5 проводов. Для Arduino есть много библиотек, желающие могут посмотреть код.
Плюсы: невысокая цена, хорошие углы обзора и яркость.
Минус: невысокое разрешение. Но для задачи вывода времени вполне достаточно.

ЖК-индикаторы

ЖК-индикаторы бывают графические и текстовые.

Графические дороже, однако позволяют выводить более разнообразную информацию (например график атмосферного давления). Текстовые дешевле, и с ними проще работать, они также позволяют выводить псевдографику - есть возможность загружать в дисплей пользовательские символы.

Работать с ЖК-индикатором из кода несложно, но есть определенный минус - индикатор требует много управляющих линий (от 7 до 12) от микроконтроллера, что неудобно. Поэтому китайцы придумали совместить ЖК-индикатор с i2c-контроллером, получилось в итоге очень удобно - для подключения достаточно всего 4х проводов (фото с eBay).


ЖК-индикаторы достаточно дешевые (если брать на еБее), крупные, их просто подключать, и можно выводить разнообразную информацию. Единственный минус это не очень большие углы обзора.

OLED-индикаторы

Являются улучшенным продолжением предыдущего варианта. Варьируются от маленьких и дешевых с диагональю 1.1", до больших и дорогих. Фото с eBay.

Собственно, хороши всем кроме цены. Что касается мелких индикаторов, размером 0.9-1.1", то (кроме изучения работы с i2c) какое-то практическое применение им найти сложно.

Газоразрядные индикаторы (ИН-14, ИН-18)

Эти индикаторы сейчас весьма популярны, видимо из-за «теплого лампового звука света» и оригинальности конструкции.


(фото с сайта nocrotec.com)

Схема их подключения несколько сложнее, т.к. эти индикаторы для зажигания используют напряжение в 170В. Преобразователь из 12В=>180В может быть сделан на микросхеме MAX771 . Для подачи напряжения на индикаторы используется советская микросхема К155ИД1 , которая специально для этого и была создана. Цена вопроса при самостоятельном изготовлении: около 500р за каждый индикатор и 100р за К155ИД1, все остальные детали, как писали в старых журналах, «дефицитными не являются». Основная сложность тут в том, что и ИН-хх, и К155ИД1, давно сняты с производства, и купить их можно разве что на радиорынках или в немногих специализированных магазинах.

2. Выбор платформы

С индикацией мы более-менее разобрались, осталось решить, какую аппаратную платформу лучше использовать. Тут есть несколько вариантов (самодельные я не рассматриваю, т.к. тем кто умеет развести плату и припаять процессор, эта статья не нужна).

Arduino

Самый простой вариант для начинающих. Готовая плата стоит недорого (около 10$ на eBay с бесплатной доставкой), имеет все необходимые разъемы для программирования. Фото с eBay:

Под Arduino есть огромное количество разных библиотек (например для тех же ЖК-экранов, модулей реального времени), Arduino аппаратно совместима с различными дополнительными модулями.
Главный минус: сложность отладки (только через консоль последовательного порта) и довольно-таки слабый по современным меркам процессор (2КБайт RAM и 16МГц).
Главный плюс: можно сделать много чего, практически не заморачиваясь с пайкой, покупкой программатора и разводкой плат, модули достаточно соединить друг с другом.

32-разрядные процессоры STM

Для тех кто захочет что-то помощнее, есть готовые платы с процессорами STM, например плата с STM32F103RBT6 и TFT-экраном. Фото с eBay:

Здесь мы уже имеем полноценную отладку в полноценной IDE (из всех разных мне больше понравилась Coocox IDE), однако понадобится отдельный программатор-отладчик ST-LINK с разъемом JTAG (цена вопроса 20-40$ на eBay). Как вариант, можно купить отладочную плату STM32F4Discovery, на которой этот программатор уже встроен, и его можно использовать отдельно.

Raspberry PI

И наконец, для тех кто хочет полной интеграции с современным миром, есть одноплатные компьютеры с Linux, всем уже наверное известные Raspberry PI. Фото с eBay:

Это полноценный компьютер с Linux, гигабайтом RAM и 4х-ядерным процессором на борту. С краю платы выведена панель из 40 пинов, позволяющая подключать различную периферию (пины доступны из кода, например на Python, не говоря о C/C++), есть также стандартный USB в виде 4х разъемов (можно подключить WiFi). Так же есть стандартный HDMI.
Мощности платы хватит к примеру, не только чтобы выводить время, но и чтобы держать HTTP-сервер для настройки параметров через web-интерфейс, подгружать прогноз погоды через интернет, и так далее. В общем, простор для полета фантазии большой.

С Raspberry (и процессорами STM32) есть одна единственная сложность - ее пины используют 3-вольтовую логику, а большинство внешних устройств (например ЖК-экраны) работают «по старинке» от 5В. Можно конечно подключить и так, в принципе заработает, но это не совсем правильный метод, да и испортить плату за 50$ как-то жалко. Правильный способ - использовать «logic level converter», который на eBay стоит всего 1-2$.
Фото с eBay:

Теперь достаточно подключить наше устройство через такой модуль, и все параметры будут согласованы.

ESP8266

Способ скорее экзотический, но довольно-таки перспективный в силу компактности и дешевизны решения. За совсем небольшие деньги (около 4-5$ на eBay) можно купить модуль ESP8266, содержащий процессор и WiFi на борту.
Фото с eBay:

Изначально такие модули предназначались как WiFi-мост для обмена по serial-порту, однако энтузиастами было написано множество альтернативных прошивок, позволяющих работать с датчиками, i2c-устройствами, PWM и пр. Гипотетически вполне возможно получать время от NTP-сервера и выводить его по i2c на дисплей. Для тех кто хочет подключить много различной периферии, есть специальные платы NodeMCU с большим числом выводов, цена вопроса около 500р (разумеется на eBay):

Единственный минус - ESP8266 имеет очень мало памяти RAM (в зависимости от прошивки, от 1 до 32КБайт), но задача от этого становится даже интересней. Модули ESP8266 используют 3-вольтовую логику, так что вышеприведенный конвертор уровней тут также пригодится.

На этом вводный экскурс в самодельную электронику можно закончить, автор желает всем удачных экспериментов.

Вместо заключения

Я в итоге остановился на использовании Raspberry PI с текстовым индикатором, настроенным на работу с псевдографикой (что вышло дешевле чем графический экран той же диагонали). Сфоткал экран настольных часов во время написания этой статьи.

Часы выводят точное время, взятое из Интернета, и погоду которая обновляется с Яндекса, все это написано на Python, и вполне работает уже несколько месяцев. Параллельно на часах запущен FTP-сервер, что позволяет (вкупе с пробросом портов на роутере) обновить на них прошивку не только из дома, но и из любого места где есть Интернет. Как бонус, ресурсов Raspberry в принципе хватит и для подключения камеры и/или микрофона с возможностью удаленного наблюдения за квартирой, или для управлением различными модулями/реле/датчиками. Можно добавить всякие «плюшки», типа светодиодной индикации о пришедшей почте, и так далее.

PS: Почему eBay?
Как можно было видеть, для всех девайсов приводились цены или фото с ебея. Почему так? К сожалению, наши магазины часто живут по принципу «за 1$ купил, за 3$ продал, на эти 2 процента и живу». В качестве простого примера, Arduino Uno R3 стоит (на момент написания статьи) 3600р в Петербурге, и 350р на eBay с бесплатной доставкой из Китая. Разница действительно на порядок, безо всяких литературных преувеличений. Да, придется подождать месяц чтобы забрать посылку на почте, но такая разница в цене думаю, того стоит. Но впрочем, если кому-то надо прямо сейчас и срочно, то наверно и в местных магазинах есть выбор, тут каждый решает сам.

Данные часы собранны на хорошо известном комплекте микросхем - К176ИЕ18 (двоичный счетчик для часов с генератором сигнала звонка),

К176ИЕ13 (счетчик для часов с будильником) и К176ИД2 (преобразователь двоичного кода в семисегментный)

При включении питания в счетчик часов, минут и в регистр памяти будильника микросхемы U2 автоматически записываются нули. Для установки

времени следует нажать кнопку S4 (Time Set) и придерживая ее нажать кнопку S3 (Hour) - для установки часов или S2 (Min) - для установки

минут. При этом показания соответствующих индикаторов начнут изменяться с частотой 2 Гц от 00 до 59 и далее снова 00. В момент перехода

от 59 к 00 показания счетчика часов увеличатся на единицу. Установка времени будильника происходит так же, только придерживать нужно

кнопку S5 (Alarm Set). После установки времени срабатывания будильника нужно нажать кнопку S1 для включения будильника (контакты

замкнуты). Кнопка S6 (Reset) служит для принудительного сброса индикаторов минут в 00 при настройке. Светодиоды D3 и D4 играют роль

разделительных точек, мигающих с частотой 1 Hz. Цифровые индикаторы на схеме расположены в правильном порядке, т.е. сначала идут

индикаторы часов, две разделительные точки (светодиоды D3 и D4) и индикаторы минут.

В часах использовались резисторы R6-R12 и R14-R16 ваттностью 0,25W остальные - 0,125W. Кварцевый резонатор XTAL1 на частоту 32 768Hz -

обычный часовой, Транзисторы КТ315А можно заменить на любые маломощные кремниевые соответствующей структуры, КТ815А - на транзисторы

средней мощности со статическим коэффициентом передачи тока базы не менее 40, диоды - любые кремниевые маломощные. Пищалка BZ1

динамическая, без встроенного генератора, сопротивление обмотки 45 Om. Кнопка S1 естественно с фиксацией.

Индикаторы использованы TOS-5163AG зеленого свечения, можно применить любые другие индикаторы с общим катодом, не уменьшая при этом

сопротивление резисторов R6-R12. На рисунке Вы можете наблюдать распиновку данного индикатора, выводы показаны условно, т.к. представлен

вид сверху.

После сборки часов, возможно, нужно будет подстроить частоту кварцевого генератора. Точнее всего это можно сделать, контролируя цифровым

частотомером период колебаний 1 с на выводе 4 микросхемы U1. Настройка генератора по ходу часов потребует значительно большей затраты

времени. Возможно, придется также подстроить яркость свечения светодиодов D3 и D4 подбором сопротивления резистора R5, чтобы все

светилось равномерно ярко. Потребляемый часами ток не превышает 180 мА.

Часы питаются от обычного блока питания, собранного на плюсовом микросхемном стабилизаторе 7809 с выходным напряжением +9V и током 1,5A.

В продаже можно встретить много различных моделей и вариантов электронных цифровых часов, но большинство из них расчитаны на использование внутри помещений, так как цифры маленькие. Однако иногда требуется разместить часы на улице - например на стене дома, или на стадионе, площади, то есть там, где они будут видны на большом расстоянии многими людьми. Для этого и была разработана и успешно собрана данная схема больших светодиодных часов, к которым можно подключить (через внутренние транзисторные ключи) LED индикаторы сколь угодно большого размера. Увеличить принципиальную схему можно кликнув по ней:

Описание работы часов

  1. Часы. В данном режиме идёт стандартный вид отображения времени. Имеется цифровая коррекция точности хода часов.
  2. Термометр. В этом случае устройство производит измерение температуры комнаты либо воздуха на улице, с одного датчика. Диапазон от -55 до +125 градусов.
  3. Предусмотрен контроль источника питания.
  4. Вывод информации на индикатор попеременно - часов и термометра.
  5. Для сохранения настроек и установок при пропадании 220В, применена энергонезависимая память.


Основой устройства является МК ATMega8, который прошивают выставляя фузы согласно таблице:

Работа и управление часами

Включив часы в первый раз, на экране появится рекламная заставка, после чего переключится на отображение времени. Нажимая на кнопку SET_TIME индикатор пойдёт по кругу из основного режима:

  • режим отображения минут и секунд. Если в этом режиме одновременно нажать на кнопку PLUS и MINUS , то произойдет обнуление секунд;
  • установка минут текущего времени;
  • установка часов текущего времени;
  • символ t . Настройка продолжительности отображения часов;
  • символ o . Время отображения символов индикации внешней температуры (out);
  • величина ежесуточной коррекции точности хода часов. Символ c и значение коррекции. Пределы установки от -25 до 25 сек. Выбранная величина будет ежесуточно в 0 часов 0 минут и 30 секунд прибавлена или вычтена из текущего времени. Более подробно читайте в инструкции, что в архиве с файлами прошивки и печатных плат.

Настройка часов

Удерживая кнопки PLUS /MINUS делаем ускоренную установку значений. После изменения каких-либо настроек, через 10 секунд новые значения запишутся в энергонезависимую память и будут считаны оттуда при повторном включении питания. Новые настройки вступают в силу по ходу установки. Микроконтроллер отслеживает наличие основного питания. При его отключении питание прибора осуществляется от внутреннего источника. Схема резервного модуля питания показана ниже:


Для уменьшения тока потребления отключаются индикатор, датчики и кнопки, но сами часы продолжают отсчитывать время. Как только напряжение сети 220В появится - все функции индикации восстанавливаются.


Так как устройство задумывалось как большие светодиодные часы, в них есть два дисплея: большой светодиодный - для улицы, и маленький ЖКИ - для удобства настройки основного дисплея. Большой дисплей расположен на расстоянии несколько метров от блока управления и соединен двумя кабелями по 8 проводов. В управление анодами внешнего индикатора индикаторов, применены транзисторные ключи по приведенной в архиве схеме. Авторы проекта: Александрович & SOIR.

В продолжение темы:
Android

Веб-сервисы в 1СВ данной статье будет рассмотрены вопросы интеграции 1С с уже существующими веб-сервисами и использование самой 1С как веб-сервиса. При этом под веб-сервисами...