Графический метод решения задачи линейного программирования. Графический метод решения задач линейного программирования: схема и примеры

Графические методы связаны прежде всего с геометрическим изображением функциональной зависимости при помощи линий на плоскости. Графики используются для быстрого нахождения значения функций по соответствующему значению аргумента, для наглядного изображения функциональных зависимостей.
В экономическом анализе применяются почти все виды графиков: диаграммы сравнения, диаграммы временных рядов, кривые распределения, графики корреляционного поля, статистические картограммы. Особенно широко распространены в анализе диаграммы сравнения - для сравнения отчетных показателей с плановыми, предшествующих периодов и передовых предприятий отечественных или зарубежных. Для наглядного изображения динамики экономических явлений (а в анализе с динамическими рядами приходится иметь дело очень часто) используются диаграммы временных рядов.
С помощью координатной сетки строятся графики зависимости, например, уровня издержек от объема произведенной и реализованной продукции, а также. графики, на которых можно изображать и корреляционные связи между показателями. В системе осей координат изображение показывает влияние различных факторов на тот или иной показатель.
Широко применяется графический метод для исследования производственных процессов, организационных структур, процессов программирования и т. д. Например, для анализа эффективности использования производственного оборудования строятся расчетные графики, в том числе графики множественных факторов.

Обозначения: каждый круг считается одной из вершин графика; цифра в верхнем секторе каждой вершины означает ее порядковый номер; нз номеров двух соседних вершин складывается шифр работы; цифра в нижнем секторе каждой вершины является порядковым номером предшествующей вершины, а линия, соединяющая эти две вершины, означает определенную работу. Внизу под линией записана плановая продолжительность данной работы; цифра в левом секторе каждой вершины означает общую продолжительность всех предшествующих работ, цифра в правом секторе отличается от цифры в левом на величину резерва (запаса времени). Такнм образом, для вершин, лежащих на критическом пути, цифры в левом и правом секторах вершины совпадают, поскольку запас времени равен 0.

В математически формализованной системе анализа, планирования и управления особое место занимают сетевые графики. Они дают большой экономический эффект при строительстве и монтаже промышленных и других предприятий.
Сетевой график (рис. 6.1) позволяет выделить из всего комплекса работ наиболее важные, лежащие на критическом пути, и сосредоточить на них основные ресурсы строительномонтажных организаций, устанавливать взаимосвязь между различными специализированными организациями и координировать их работу. Работы, лежащие на критическом пути, требуют наиболее продолжительного ожидания поступления очередного события. На стадии оперативного анализа и управления сетевой график дает возможность осуществлять действенный контроль за ходом строительства, своевременно принимать меры по устранению возможных задержек в работе.
Применение сетевых графиков анализа, планирования и управления обеспечивает, как показывают многие примеры, сокращение сроков строительства на 20-30%, повышение производительности труда на 15-20%.
При анализе, осуществляемом непосредственно на стройках, использование материалов сетевого планирования и управления способствует правильному определению причин, влияющих на ход строительства, и выявлению предприятий, не обеспечивающих выполнение порученных им работ или поставку оборудования в сроки, установленные графиком.
Разработка сетевого графика в строительстве осуществляется при наличии: норм продолжительности строительства и срока ввода в действие объекта или комплекса объектов, проектно-сметной документации, проекта организации строительства и производства работ, типовых технологических карт, действующих норм затрат труда, материалов и работы машин. Кроме того, при составлении графика используются опыт выполнения отдельных работ, а также данные о производственной базе строительных и монтажных организаций.
На основе всех этих данных составляется таблица работ и ресурсов, где в технологической последовательности производства работ указываются их характеристика, объем, трудоемкость в человеко-днях, исполнитель (организация и бригада), численность рабочих, сменность, потребность в механизмах и материалах, источники их поступления, общая продолжительность выполнения работы в днях, а также предшествующее задание, после окончания которого можно начинать данную работу. Исходя из показателей такой таблицы, подготавливают сетевой график, который может иметь различную степень детализации в зависимости от принятой схемы произ
водства работ и уровня руководства; кроме общего графика исполнители разрабатывают график выполняемых ими работ.
Основные элементы сетевого графика: событие, работа, ожидание, зависимость.
При анализе хода строительства объекта следует устанавливать, правильно ли составлен сетевой график, не допущено ли при этом завышение критического пути, учтены ли при оптимизации графика все возможности его сокращения, нельзя ли какие-либо работы выполнять параллельно или сократить время, затрачиваемое на них, путем увеличения средств механизации и др. Это особенно важно в тех случаях, когда продолжительность работ по графику не обеспечивает окончание строительства в срок.
Основным материалом сетевого планирования, используемого при анализе, является информация о ходе работ по графику, который обычно составляется не реже одного раза в декаду. В качестве примера приводится карта задания и информации о ходе работы по объекту строительства, осуществляемому по сетевому графику (табл. 6.1). По данным карты, критические работы выполнялись в начале месяца с опережением графика, однако затем было допущено отставание монтажа подкрановых балок по ряду Б, а последующая работа - монтаж подкрановых балок по ряду А - закончена с отставанием на один день.
Оптимизация сетевых графиков осуществляется на стадии планирования посредством сокращения критического пути, т. е. минимизации сроков выполнения строительных работ при заданных уровнях ресурсов, минимизации уровня потребления материальных, трудовых и финансовых ресурсов при фиксированных сроках выполнения строительных работ. Возможен и смешанный подход: для одной части работ (более дорогостоящих) - минимизировать уровень потребления ресурсов при фиксированных сроках выполнения работ, для другой - минимизировать сроки при фиксированном уровне ресурсов.
Решение оптимизационных задач существенно облегчается наличием пакетов прикладных программ (ППП), приспособленных к составлению оптимальных сетевых графиков на ЭВМ.
В зарубежной практике системного анализа распространен графо-математический метод, получивший название «дерево решений». Суть этого метода заключается в следующем.
Путем предварительной оценки потребностей, предварительного анализа возможных организационных, технических или технологических условий намечаются все предполагаемые варианты решения данной задачи. Вначале разрабатываются



Задание


Информация

Резерв времени по работам

Чис
тый

Наименование
работ

шифр

дата
начала

дата
оконча

плановая
продол

Ре
зерв
вре

%
тех-

требуемое время для

при
чина

фактическая дата

находя
щимся

не находящимся

резерв времени с


работ

работ
(план)

ния
работ
(план)

житель
ность,
дней

мени

кой
готов
ности

оконча
ния
работ,
дней

задер
жки

оконча
ния
работ

на критическом пути

аа критическом пути

начала месяца, дней

1

2

3

4

5

6

7

8

9

10

11

12

13

Разработка грунта

1-2

1/IV

6/IV

5

0

100

-

-

6/IV

¦-

-

-

Бетонирование фундаментов под котлы

2-3

7/IV

17/1V

9

0

100

14/IV

2

2

Бетонирование фундаментов по ряду А

2-4

7/IV

14/1V

7

2

100

14/IV




То же по ряду Б

2-5

7/IV

14/IV

7

2

100

-

-

14/IV




Устройство трубной разводки

6-18

18/IV

21/IV

4

19

100

-

-

29/IV

-7

Устройство обратной засыпки

6-7

18/IV

19/IV

2

0

100

17/IV

2

2

Монтаж сборных железобетонных ко













лонн:
по ряду Б

7-8

20/IV

22/IV

3

1

100

-

-

22/IV

_

-

-

по ряду А

7-9

20/IV

22/IV

3

1

100

-

-

22/IV

-

-

-

Устройство подкрановых путей и монтаж башенного крана 7-10
Установка опорных рам на фундамент под оборудование 7-16 Монтаж подкрановых балок:
по ряду Б 8-11
20/IV 24/IV 4
20/IV 24/IV 4
24/IV 25/IV 2

по ряду А 10-12 25/IV 26/IV
Монтаж первой части балок и плит покрытия 12-13 27/IV 4/V
Монтаж подкрановых путей мостового lt;3 крана 12-14 27/IV 3/V


6

7

8

9

10

11

12

13

0

100

-

-

22/IV

1

-

1

14

100.

-

-

29/IV

-

-5

-

1

100

за-

27/IV

-2

27/IV -1
держ- ка с поставкой ж/б конструкций
  1. 100 -

укрупненные варианты. Затем по мере введения дополнительных условий каждый из них расчленяется на ряд вариантов. Графическое изображение этих вариантов позволяет исключить менее выгодные из них и избрать наиболее приемлемый.
Этот метод может найти у нас применение при определении порядка обработки тех или иных деталей на нескольких станках в целях минимизации общего времени обработки; при установлении размеров ресурсов для минимизации общих производственных издержек; при распределении капиталовложений и других ресурсов по промышленным объектам; при решении транспортных и других задач.

На этом уроке будем знакомиться с графическим методом решения задач линейного программирования , то есть, таких задач, в которых требуется найти такое решения системы линейных уравнений и (или) неравенств (системы ограничений), при котором функция цели - линейная функция - принимает оптимальное значение.

Ввиду того, что наглядность графического решения достигается лишь на плоскости, мы можем познакомиться с графическим представлением задачи только в двумерном пространстве. Это представление пригодно для системы ограничений-неравенств с двумя переменными или для систем уравнений, в которых число переменных на 2 превышает число уравнений, то есть число свободных переменных равно двум.

Поэтому графический метод имеет такие узкие рамки применения, что о нём как об особом методе решения задач линейного программирования говорить нельзя.

Однако для выработки наглядных представлений о решениях задач линейного программирования графический метод представляет определённый интерес. Кроме того, он позволяет геометрически подтвердить справедливость теорем линейного программирования .

Теоретические основы графического метода

Итак, задача линейного программирования. Требуется найти неотрицательные значения переменных и , удовлетворяющих системе неравенств

при которых линейная форма принимает оптимальное значение.

Пример 3.

Пример 4. Решить графическим методом задачу линейного программирования, в которой требуется найти минимум функции при ограничениях

Продолжаем решать задачи графическим методом вместе

До сих пор полученные выводы были основаны на том, что множество решений задачи линейного программирования сконфигурировано так, что оптимальное решение конечно и единственно. Теперь рассмотрим примеры, когда это условие нарушается. В этих примерах многоугольник решений строится так, как показано в предыдущих примерах, остановимся же на признаках, которые отличают эти исключительные примеры.

Пример 5. Решить графическим методом задачу линейного программирования, в которой требуется найти максимум функции при ограничениях

Решение. На рисунке изображены: неограниченная многогранная область решений данной системы ограничений, исходная линия уровня (чёрного цвета), вектор (бордового цвета), указывающий направление движения исходной линии уровня для нахождения максимума целевой функции.

Легко заметить, что функция F может неограниченно возрастать при заданной системе ограничений, поэтому можно условно записать, что .

Пример 6. Решить графическим методом задачу линейного программирования, в которой требуется найти максимум функции при ограничениях

В линейном программировании используется графический метод, с помощью которого определяют выпуклые множества (многогранник решений). Если основная задача линейного программирования имеет оптимальный план, то целевая функция принимает значение в одной из вершин многогранника решений (см. рисунок).

Назначение сервиса . С помощью данного сервиса можно в онлайн режиме решить задачу линейного программирования геометрическим методом, а также получить решение двойственной задачи (оценить оптимальность использования ресурсов). Дополнительно создается шаблон решения в Excel .

Инструкция . Выберите количество строк (количество ограничений).

Количество ограничений 1 2 3 4 5 6 7 8 9 10
Если количество переменных больше двух, необходимо систему привести к СЗЛП (см. пример и пример №2). Если ограничение двойное, например, 1 ≤ x 1 ≤ 4 , то оно разбивается на два: x 1 ≥ 1 , x 1 ≤ 4 (т.е. количество строк увеличивается на 1).
Построить область допустимого решения (ОДР) можно также с помощью этого сервиса .

Вместе с этим калькулятором также используют следующие:
Симплексный метод решения ЗЛП

Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных
Вычисление пределов

Решение задачи линейного программирования графическим методом включает следующие этапы :

  1. На плоскости X 1 0X 2 строят прямые.
  2. Определяются полуплоскости.
  3. Определяют многоугольник решений;
  4. Строят вектор N(c 1 ,c 2), который указывает направление целевой функции;
  5. Передвигают прямую целевую функцию c 1 x 2 + c 2 x 2 = 0 в направлении вектора N до крайней точки многоугольника решений.
  6. Вычисляют координаты точки и значение целевой функции в этой точке.
При этом могут возникать следующие ситуации:

Пример . Компания изготавливает два вида продукции - П1 и П2. Для производства продукции используются два вида сырья - С1 и С2. Оптовые цены единицы продукции равна: 5 д.е. для П1 и 4 д.е. для П2. Расход сырья на единицу продукции вида П1 и вида П2 дан в таблице.
Таблица - Расход сырья на производство продукции

Установлены ограничения на спрос продукции: ежедневный объем производства продукции П2 не должен превышать ежедневный объем производства продукции П1 не более чем на 1 тонну; максимальный ежедневный объем производства П2 не должен превышать 2 т.
Требуется определить:
Какое количество продукции каждого вида должно производить предприятие, чтобы доход от реализации продукции был максимальным?
  1. Сформулировать математическую модель задачи линейного программирования.
  2. Решить задачу линейного программирования графическим способом (для двух переменных).
Решение.
Сформулируем математическую модель задачи линейного программирования.
x 1 - производство продукции П1, ед.
x 2 - производство продукции П2, ед.
x 1 , x 2 ≥ 0

Ограничения по ресурсам
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6

Ограничения по спросу
x 1 +1 ≥ x 2
x 2 ≤ 2

Целевая функция
5x 1 + 4x 2 → max

Тогда получаем следующую ЗЛП:
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6
x 2 - x 1 ≤ 1
x 2 ≤ 2
x 1 , x 2 ≥ 0
5x 1 + 4x 2 → max

Краткая теория

Линейное программирование - раздел математического программирования, применяемый при разработке методов отыскания экстремума линейных функций нескольких переменных при линейных дополнительных ограничениях, налагаемых на переменные. По типу решаемых задач его методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений. Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений.

Графический метод решения задач линейного программирования дает возможность наглядно представить их структуру, выявить особенности и открывает пути исследования более сложных свойств. Задачу линейного программирования с двумя переменными всегда можно решить графически. Однако уже в трехмерном пространстве такое решение усложняется, а в пространствах, размерность которых больше трех, графическое решение, вообще говоря, невозможно. Случай двух переменных не имеет особого практического значения, однако его рассмотрение проясняет свойства ограничений ЗЛП, приводит к идее ее решения, делает геометрически наглядными способы решения и пути их практической реализации.

Если ограничения и целевая функция содержит более двух переменных, тогда необходимо (или методом последовательного улучшения решения) - он универсален и им можно решить любую ЗЛП. Для некоторых прикладных задач линейного программирования, таких как , разработаны специальные методы решения.

Пример решения задачи

Условие задачи

Предприятие выпускает два вида продукции: Изделие 1 и Изделие 2. На изготовление единицы Изделия 1 требуется затратить кг сырья первого типа, кг сырья второго типа, кг сырья третьего типа. На изготовление единицы Изделия 2 требуется затратить кг первого типа, сырья второго типа, сырья третьего типа. Производство обеспечено сырьем каждого типа в количестве кг, кг, кг соответственно. Рыночная цена единицы Изделия 1 составляет тыс руб., а единицы Изделия 2 - тыс. руб.

Требуется:

  • Построить математическую модель задачи.
  • Составить план производства изделий, обеспечивающий максимальную выручку от их реализации при помощи графического метода решения задачи линейного программирования.

Чтобы решение задачи по линейному программированию было максимально точным и верным, многие недорого заказывают контрольную работу на этом сайте. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить контрольную работу по линейному программированию...

Решение задачи

Построение модели

Через и обозначим количество выпускаемых изделий 1-го и 2-го типа.

Тогда ограничения на ресурсы:

Кроме того, по смыслу задачи

Целевая функция экономико-математической модели, выражающая получаемую от реализации выручку:

Получаем следующую экономико-математическую модель:

Построение области допустимых решений

Решим полученную задачу линейного программирования графическим способом:

Для построения области допустимых решений строим в системе координат соответствующие данным ограничениям-неравенствам граничные прямые:

Найдем точки, через которые проходят прямые:

Решением каждого неравенства системы ограничений ЗЛП является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.

Для определения полуплоскости возьмём любую точку, например , не принадлежащую прямой (1), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Области решений соответствующего 1-го неравенства соответствует левая полуплоскость

Возьмём любую точку, например , не принадлежащую прямой (2), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Возьмём любую точку, например , не принадлежащую прямой (3), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Области решений соответствующего 2-го неравенства соответствует левая полуплоскость

Областью допустимых решений является фигура .

Нахождение решения задачи ЛП

Строим вектор , координаты которого пропорциональны коэффициентам целевой функции. Здесь - коэффициент пропорциональности.

Перпендикулярно к построенному вектору проводим линию уровня .

Перемещаем линию уровня в направлении вектора так, чтобы она касалась области допустимых решений в крайней точке. Решением на максимум является точка , координаты которой находим как точку пересечения прямых (2) и (1).

Ответ

Таким образом необходимо выпускать 56 изделий 1-го вида и 64 изделия 2-го вида. При этом выручка от реализации изделий будет максимальна и составит 5104 ден.ед.

Метод графического решения, если задача с двумя переменными имеет линейные ограничения, а целевая функция - квадратичная, подробно рассмотрен здесь
На странице подробно разобрано решение задачи линейного программирования симплексным методом, кроме того, показано построение двойственной задачи линейного программирования и нахождение ее решения по решению прямой задачи.

Транспортная задача и метод потенциалов
Подробно рассмотрена транспортная задача, ее математическая модель и методы решения - нахождение опорного плана методом минимального элемента и поиск оптимального решения методом потенциалов.

Выпуклое программирование - графический метод
Приведен образец решения задачи квадратичного выпуклого программирования графическим методом.

Рассмотрим сначала простейший случай, когда в ЗЛП включены ровно две переменные:

Каждое из неравенств (a)-(b) системы ограничений задачи (3.8) геометрически определяет полуплоскость соответственно с граничными прямыми , Х 1 =0 и Х 2 =0. Каждая из граничных прямых делит плоскость х 1 Ох 2 на две полуплоскости. Все решения исходного неравенства лежат в одной из образованных полуплоскостей (все точки полуплоскости) и, следовательно, при подстановке координат любой ее точки в соответствующее неравенство обращает его в верное тождество. С учетом этого и определяется та полуплоскость, в которой лежат решения неравенства, т.е. путем выбора любой точки из какой-либо полуплоскости и подстановки ее координат в соответствующее неравенство. Если неравенство выполняется для данной точки, то оно выполняется и для любой другой точки из этой же полуплоскости. В противном случае решения неравенства лежат в другой полуплоскости.

В том случае, если система неравенств (a)-(b) совместна, то область её решений есть множество точек, принадлежащих всем указанным полуплоскостям. Так как множество точек пересечения данных полуплоскостей выпуклое, то область допустимых решений задачи (3.8) является выпуклое множество, которое называется многоугольником решений (введённый ранее термин “многогранник решений” обычно употребляется, если n 3). Стороны этого многоугольника лежат на прямых, уравнения которых получаются из исходной системы ограничений заменой знаков неравенств на знаки точных равенств.

Таким образом, исходная ЗЛП состоит в нахождении такой точки многоугольника решений, в которой целевая функция F принимает максимальное (минимальное) значение.

Эта точка существует тогда, когда многоугольник решений не пуст и на нём целевая функция ограничена сверху. При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины строят линию уровня L: c 1 x 1 +c 2 x 2 =h (где h – некоторая постоянная), перпендикулярную вектору-градиенту и проходящую через многоугольник решений, и передвигают её параллельно вдоль вектора-градиента до тех пор, пока она не пройдёт через последнюю её общую точку пересечения с многоугольником решений (при построении вектора-градиента откладывают точку (с 1 ; с 2) в плоскости х 1 Ох 2 и проводят к ней из начала координат направленный отрезок). Координаты указанной точки и определяют оптимальный план данной задачи.

Суммируя все выше изложенное, приведем алгоритм графического метода решения ЗЛП.

Алгоритм графического метода решения ЗЛП

1. Построить многоугольник решений, задаваемый системой ограничений исходной ЗЛП.


2. Если построенный многоугольник решений – пустое множество, то исходная ЗЛП решений не имеет. В противном случае построить вектор-градиент и провести произвольную линию уровня L, перемещая которую при решении задачи на максимум в направлении вектора (или в обратном направлении для задачи на минимум) определить крайнюю точку многоугольника решений, где и достигается максимум (минимум) целевой функции задачи.

3. Вычислить координаты найденной оптимальной точки , решив систему уравнений двух граничных прямых, пересекающихся в ней.

4. Подстановкой найденного оптимального решения в целевую функцию задачи вычислить оптимальное ее значение, т.е.: .

При графическом построении множества допустимых решений ЗЛП (многоугольника решений) возможны следующие ситуации.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...